期刊文献+

左ZGP-V′-环的非奇异性 被引量:2

On the Non-Singularity of Left ZGP-V′-Rings
下载PDF
导出
摘要 本文主要研究了ZGP-V′-环的非奇异性,证明了如下结果:(1)如果R是左ZGP-V′-环,则Z(RR)∩Z(RR)=0且Z(RR)∩J(R)=0;(2)如果R是左ZGP-V′、AGP-内射环,则R右非奇异. In this paper, we mainly study the non-singularity of left ZGP-V'-rings, and obtain the following results: (1) If R is a left ZGP-V'-ring, then Z(RR) ∩ Z(RR) = 0 and Z(RR) ∩ J(R) = 0; (2) IfR is left ZGP-V' ,AGP-ring, then Z(RR) = 0.
出处 《安徽师范大学学报(自然科学版)》 CAS 北大核心 2012年第4期330-331,339,共3页 Journal of Anhui Normal University(Natural Science)
基金 国家自然科学基金(10971099)
关键词 ZGP-内射模 ZGP-内射环 广义弱理想 ZGP-V′-环 ZGP-injective modules ZGP-injectiverings GW-ideas ZGP-V'-rings
  • 相关文献

参考文献10

  • 1YUE CHIMING R. On regular rings and Artianian rings(Ⅱ) [J]. Riv Math Univ Parma, 1985,11 (4) : 101 - 109.
  • 2XIAO Guangshi, TONG Wenting. Rings whose every simple left R-moule is GP-injective[J ]. Southeast Asian Bulletin of Math, 2006,30.. 969 - 980.
  • 3江步云,殷晓斌.ZGP-内射性的若干研究[J].安庆师范学院学报(自然科学版),2011,17(2):10-12. 被引量:5
  • 4殷晓斌,单方方.关于GP-V′-环的注记[J].安徽师范大学学报(自然科学版),2009,32(1):1-3. 被引量:2
  • 5殷晓斌,王瑞.广义N-半正则环(英文)[J].杭州师范大学学报(自然科学版),2011,10(2):97-100. 被引量:1
  • 6THOMAS W Hungorford. Algebra[ M ]. New York: Springer-Verlag, 1980.
  • 7WET Junchao. JCP-injective tings[J], lnterational Eletronic Jounal of Algebra, 2009:1 - 22.
  • 8YOUSIF M F, ZHOU Y Q. Rings for which certain elements have the principal extension property[J]. Algebra Collq,2003,10(4) :501 - 512.
  • 9PAGE S, ZHOU Yiqiang. Generalizations of principally injective rings[J]. J Algebra, 1998,206:706 -721.
  • 10ZHOU Haiyan. SF-rings and regular rings[D]. Wuhu: Anhui Normal University,2002.

二级参考文献27

  • 1GOODEARL K R. Ring theory: nonsingular rings and modules[M]. New York, Basel: Marcel Dekker INC, 1976.
  • 2GOODEARL K R. yon Neurnarm regular rings[M]. Florida: Krieger Publishing Company, 1991.
  • 3XIAO Guangshi, TONG Wenting. Rings whose every simple left R-module is GP-injective[J]. Southeast Asian Bulletin of Math, 2006,30:969 - 980.
  • 45rUE Chi Ming R. On regular rings and Artinian rings(Ⅱ) [J]. Riv Math Univ Parma, 1985,11 (4):101 - 109.
  • 5WISBAUER R. Foundations of module and ring theory[ M]. London, Tokyo: Gordon and Breach, 1991.
  • 6ZHANG Jule, LU Rongdian. Strongly regular rings and SF-rings[J]. Northeast Math J, 1998,14( 1 ) :61 - 68.
  • 7ANDERSON F W, FULLER K R. Rings and categories of modules[M]. 2nd Ed. Berlin, Heidelberg, New York: Springer-Verlag,2004.
  • 8UTUMI Y. On continuous rings and self-injective rings[J ]. Trans Amer Math Soc, 1965,118:158 - 173.
  • 9Goodear K R. Ring theory: nonsingular rings and modules[J]. Pure and Appl Math, 1976,8:206.
  • 10Goodear K R. Von Neumann regular rings[M]. Florida:Krieger Publishing Company, 1991.

共引文献4

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部