期刊文献+

基于PCA+LDA的特征融合的3D手写识别特征集取技术 被引量:1

3D Space Handwriting Recognition Feature Extraction Based on PCA and LDA Combination
原文传递
导出
摘要 文章针对基于3D加速度传感器的空间手写识别进行特征集取的研究,提出了一种基于PCA+LDA的特征融合进行分类识别的方法。首先从加速度数据中提取时域特征-旋转特征RF(RotationFeature),然后再利用FFT变换(Fast Fourier Transform)提取三维加速度的频域特征FFT,接着将时域特征RF和频域特征FFT进行特征融合,并利用PCA(Principal Component Analysis)+LDA(Linear Discriminate Analysis)组合进行降维,最后利用SVM(支持向量机)进行分类识别。实验结果显示,本文提出的方法可以有效提升3D手写识别系统的识别率。 In the research on the feature extraction for 3D space handwriting recognition based on 3D accelerometer,a new recognition method based on fusion feature which combines PCA algorithm and LDA algorithm is proposed.The method can be explained as follows: firstly,from accelerometer data we extract the timedomain feature-Rotation Feature(RF);secondly,we uses FFT to extract the frequency-domain feature-FFT Feature of the accelerometer data;then the above two categories of features are fused together and the Principal Component Analysis(PCA) and Linear Discriminate Analysis(LDA) Combination is applied to reduce the dimension of the fusion feature.Finally,Supported Vector Machine(SVM) is used in the recognition of the 3D space handwriting characters.The experiment results show that the proposed method can significantly improve the performance of 3D space handwriting recognition systems.
作者 应攀 沈海斌
出处 《电子技术(上海)》 2013年第3期21-24,共4页 Electronic Technology
关键词 3D手写识别 旋转特征 快速傅里叶变换 特征融合 支持向量机 3D space handwriting recognition Rotation Feature(RF) Fast Fourier Transform(FFT) feature fusion Supported Vector Machine(SVM)
  • 相关文献

参考文献7

  • 1Sung-Do Choi, Lee A S. On-line handwritten character recognition with 3D accelerometer[C]// IEEE International Conference on Information Acquisition, 2006: 845-850.
  • 2Yang Xue, Lianwen Jin. A new rotation feature for single tri-axial accelerometer based 3D spatial handwritten digit recognition[C]//IEEE, Pattern Recognition(ICPR), 20th International Conference, 2010:4218 - 4221.
  • 3Zhenyu He, Lianwen Jin. Gesture recognition based on 3D accelerometer for cell phones Interaction[C ]//IEEE Asia Pacific Conference on Circuits and Systems, 2008:217-220.
  • 4许占伟,张涛.基于NCT的特征级图像融合[J].计算机工程,2011,37(16):209-211. 被引量:2
  • 5马晓龙.数据降维方法综述[R].清华大学自动化系信息所.
  • 6Jianke Li, Baojun Zhao, Hui Zhang, et al. Face recognition system using SVM classifier and feature extraction by PCA and LDA combination[C]// International Conference on Computational Intelligence and Software Engineering, 2009:1-4,11-13.
  • 7Chang C A, LIBSVM L C. A library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011,2(3): 21-27.

二级参考文献11

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2强赞霞.遥感图像的融合及应用[D]华中科技大学,华中科技大学2005.
  • 3Bushra N.Pixel and Feature Level Multiresolution Image Fusion Based on Fuzzy Logic. http://www.sprin-gerlink.com/content/m45343898303x3h1/ . 2006
  • 4Lin Qiwei,Feng Gui.A Novel Image Fusion Algorithm Based on Wavelet Transforms. http://www.shendusou.com/search?q=cview:7YUe2R1XaC&l=all . 2007
  • 5Gonzalo Pajares,Jesus Manuel de la Cruz.A wavelet-based image fusion tutorial. Pattern Recognition . 2004
  • 6Minh N Do,Marin Vetterli.Contourlets: a directional multiresolution image representation. Proceedings of IEEE International Conference on Image Processing . 2002
  • 7Ekblad U,Kinser J M.The Intersecting Cortical Model in Image Processing. Nuclear Instruments&Methods in PhysicsResearch Section A:Accelerators,Spectrometers,Detectors and Associated Equipment . 2004
  • 8J.Kinser.A Simplified Pulse-Coupled Neural Network. SPIE Proceeding . 1996
  • 9孟昭山,刘洋,张延波.一种基于àtrous小波变换的遥感影像融合方法[J].测绘与空间地理信息,2010,33(1):84-86. 被引量:2
  • 10丁莉,韩崇昭.基于清晰度和非下采样多聚焦图像融合[J].计算机工程,2010,36(11):212-214. 被引量:8

共引文献1

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部