期刊文献+

基于香味素诱导及道路分级的OPP问题的蚁群算法

Ant Colony Optimization Algorithm Based on Scent Inducement and Route Classification for the Optimal Path Problems
下载PDF
导出
摘要 为解决传统蚁群算法在求解最优路径问题(optimal path problems,OPP)时,搜索效率不高、最优解质量偏低的问题,提出了一种基于香味素诱导和道路分级的蚁群算法.该算法首先通过模拟食物源(目的地点)散发出的一种吸引蚂蚁不断向其靠近的香味素,使蚂蚁的搜索具有指向性;然后根据拥堵系数将路网中的道路分为不同的等级,并结合动态的分级策略防止算法陷入早熟.实验结果表明:本文算法比传统蚁群算法在最优解的质量及稳定性方面具有一定的优势. Ant Colony Optimization (ACO) had not a well efficiency and ignored the traffic jam which was a serious problem in the real traffic, so it was hard to obtain a good solution. Therefore, a highly efficient ACO was proposed. First, the destination emitted fragrance information which could attract ants close to the destination and make the search of ants have directivity; Second, the route in road networks was classified, and dynamic classification strategy was combined to avoid the shortcoming such as stagnation. Result shows that this algorithm is better than ACO algorithm in the stability and quality of optimum solution.
出处 《北京工业大学学报》 CAS CSCD 北大核心 2013年第5期722-729,共8页 Journal of Beijing University of Technology
基金 北京市自然科学基金资助项目(4102010)
关键词 最优路径问题 蚁群算法 香味素 拥堵系数 动态分级策略 optimal path problems ant colony optimization algorithm fragrance information congestionfactor dynamic classification strategy
  • 相关文献

参考文献10

  • 1DORIGO M,COLORNI A, MANIEZZO V. Distributedoptimization by ant colonies [ C] // Proc of the firstEuropean Conf of Artificial Life. Paris: Elsevier, 1991 :134-142.
  • 2DORIGO M,MANIEZZO V, COLORNI A. The antsystem ; optimization by a colony of cooperating agents [ J ].IEEE Transactions on Systems, Man, and Cybernetics B,1996(1) : 29-41.
  • 3LEE Joon-woo, KIM Jeong-jung, CHOI Byoung-suk.Improved ant colony optimization agorithm by potential fieldconcept for optimal path planning [ C ] // IEEE-RASInternational Conference on Humanoid Robots.Piscataway: IEEE Computer Society, 2008 : 662-667.
  • 4JAGADEESH G R, SRIKANTHAN T. Route computationin large road networks : a hierarchical approach [ J ]. IETIntelligent Transport Systems, 2008,2(3): 219-227.
  • 5LIU Yong-qiang,CHANG Qing, XIONG Hua-gang. Animproved ant colony algorithm for the time-dependentvehicle routing problem [C] // International Conference onLogistics Engineering and Intelligent TransportationSystems (LEITS). Piscataway: IEEE, 2010: 1-4.
  • 6NGUYEN Duc-hien, JUANG Jyh-ching. A refined antcolony algorithm for optimal path planning [ C ] //Proceedings of 2011 International Conference on SystemScience and Engineering. Macao: IEEE, 2011 ; 125-130.
  • 7TEODOROVIC Dusan. Transport modeling by multi-agentsystems : a swarming intelligence approach [J].Transportation Planning and Technology, 2003,26(4):289-312.
  • 8吴斌,史忠植.一种基于蚁群算法的TSP问题分段求解算法[J].计算机学报,2001,24(12):1328-1333. 被引量:247
  • 9GAMBARDELLA L M, DORIGO M. An ant colonyoptimization[ J]. Complex Systems, 1998,1(2) : 149-159.
  • 10STECK K, HANSSON B S, KNADEN M. Smells likehome: desert ants, cataglyphis fortis, use olfactorylandmarks to pinpoint the nest[ J ]. Frontiers in Zoology,2009,6(5) : 1-8. doi: 10. 1186/1742-9994-6-5.

二级参考文献6

  • 1康立山 谢云 等.非数值并行算法(第1册)[M].北京:科学出版社,1997..
  • 2Jiang Rui,Proc Conference on Intelligent Information Processing(WCC 2000 IIP 2000),2000年,478页
  • 3Wu Qinghong,计算机研究与发展,1999年,36卷,10期,1240页
  • 4康立山,非数值并行算法.1 模拟退火算法,1997年
  • 5吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法[J].计算机研究与发展,1999,36(10):1240-1245. 被引量:306
  • 6张素兵,吕国英,刘泽民,周正.基于蚂蚁算法的QoS路由调度方法[J].电路与系统学报,2000,5(1):1-5. 被引量:35

共引文献246

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部