期刊文献+

黑曲霉ZJUQH产α-半乳糖苷酶的固体发酵培养基优化研究 被引量:4

Optimization by Response Surface Methodology of Solid-state Fermentation Medium for α-Galactosidase Production by Aspergillus niger ZJUQH
下载PDF
导出
摘要 通过响应面方法优化固体发酵培养基,以提高黑曲霉ZJUQH产α-半乳糖苷酶的能力。在前期研究的基础上,通过部分因子试验对蛋白胨、Na2HPO4·12H2O、料液比和接种量进行系统考察,筛选出两个影响较显著的因素料液比和蛋白胨添加量,然后通过中心组合试验进一步优化,建立以α-半乳糖苷酶酶活力为响应值的二次回归方程模型,获得了最优的固体发酵培养基组成:蛋白胨0.6g、Na2HPO4·12H2O 0.08g、料液比1:2.44(m/V)接种量1.5mL/5g。在该优化的培养条件下,固态发酵6d产α-半乳糖苷酶的酶活达到(77.21±2.01)U/g,比优化前(蛋白胨0.4g、Na2HPO4·12H2O 0.08g、料液比1:3、接种量1.5mL/5g)培养得到的酶活力最高值(49.05±2.11)U/g提高57.41%。 In order to enhance the production of α-galactosidase by Aspergillus niger ZJUQH,response surface methodology was applied to optimize the solid culture medium.A fractional factorial design was used to investigate the main factors affecting α-galactosidase yield.The results showed that two factors played important roles in the production of α-galactosidase.Central composite design and response surface analysis were applied to establish a second-order regression equation model for the yield of α-galactosidase.At last,the optimal fementation condition were obtained by response surface analysis as follows: peptone 0.6 g,Na2HPO4.12H2O 0.08 g,ratio of solid to water 0.41 and inoculum quantity 1.5 mL/5g.Under the optimal conditions,the activity of α-galactosidase reached(77.21±2.01) U/g,which was increase by 57.41% compared with(49.05 ± 2.11) U/g before the oprimization,that is,peptone 0.4 g,Na2HPO4.12H2O 0.08 g,ratio of solid to water 0.33 and inoculation quantity 1.5 mL/5 g.
出处 《食品科学》 EI CAS CSCD 北大核心 2013年第9期216-219,共4页 Food Science
基金 浙江省重点创新团队项目(2010R50032)
关键词 响应面优化法 黑曲霉ZJUQH Α-半乳糖苷酶 固体发酵 response surface methodology Aspergillus niger ZJUQH α-galactosidase solid-state fermentation
  • 相关文献

参考文献15

  • 1COMFORT D A, BOBROV K S’ IVANEN D R, et al. Biochemicalanalysis of Thermotoga maritima GH36 a-galactosidase (TmGalA)confirms the mechanistic commonality of clan GH-D glycosidehydrolases[J]. Biochemistry, 2007,46(11): 3319-3330.
  • 2VIANA P A, de REZENDE S T, MARQUES V M, et al. Extracellulara-galactosidase from Debaryomyces hansenii UFV-1 and its use in thehydrolysis of raffinose oligosaccharides[J]. Journal of Agricultural andFood Chemistry, 2006, 54(6): 2385-2391.
  • 3SCALABRINIA P,ROSSIB M, SPETTOLIA P,et al. Characterizationof Bifidobacterium strains for use in soymilk fermentation[J].International Journal of Food Microbiology, 1998, 39(3): 213-219.
  • 4CHAHAL D S. Solid-state fermentation with Trichoderma reesei forcellulase production[J]. Applied and Environmental Microbiology,1985,49(1): 205-210.
  • 5NIGAM P, SINGH D. Recent process developments in solid-statesubstrate systems and their applications in biotechnology solid-statefermentation[J]. Journal of Basic Microbiology, 1994,34(6): 405-423.
  • 6PANDEY A, SELVAKUMAR P, POONAM N. Solid-statefermentation for the production of industrial enzymes[J]. CurrentScience, 1999,77(1): 149-169.
  • 7HOLKER U, HOFER M,LENZ J. Biotechnological advantagesof laboratory-scale solid-state fermentation with fungi[J]. AppliedMicrobiology and Biotechnology, 2004, 64(2): 175-186.
  • 8CHEN Q H, HE G Q,ALI MAM. Optimization of mediumcomposition for the production of elastase by Bacillus sp. EL31410with response surface methodology[J]. Enzyme and MicrobialTechnology, 2002,30(5): 667-672.
  • 9CHEN Qihe, FU Mingliang, LIU Jing, et al. Optimization ofultrasonic-assisted extraction (UAE) of betulin from white birch barkusing response surface methodology [J]. Ultrasonics Sonochemistry,2009,16(5): 599-604.
  • 10LIU Caiqin, CHEN Qihe, RUAN Hui, et al. Response surfacemethodology for optimizing the fermentation medium of alpha-galactosidase in solid-state fermentation[J]. Letters in AppliedMicrobiology’ 2007,45(2): 206-212.

二级参考文献25

  • 1李芳,刘波,刘芳,陈家骅.摇床转速对淡紫拟青霉菌生长的影响[J].微生物学杂志,2005,25(2):103-106. 被引量:6
  • 2白东栋,吴坚平,徐刚,杨立荣.响应面法优化烯丙醇酮乙酸酯水解酶的产酶条件[J].食品与生物技术学报,2007,26(1):71-76. 被引量:7
  • 3Feng Xu, Juozas J. Kulys, et al. Redox chemistry in laccase-catalyzed oxidation of N-Hydroxy compounds [ J ]. Applied and Environmental Microbiology, 2000, 66: 2052-2056.
  • 4Ullah M A, Bedford C T, Evans C S. Reaction of pentachlorophenol with laccase from Coriolus versicolor [J]. Applied Microbiology and Biotechnology, 2000, 53: 230- 234.
  • 5Arias M E, Arenas M, Rodriguez J, et al. Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335 [J].Applied and Environmental Microbiology, 2003, 69: 1 953-1 958.
  • 6Minussi R C, Pastore G M, Durany N. Potential applications of laccase in the food industry [ J]. Trends in Food Science and Technology, 2002, 13:205 -216.
  • 7Li J F, Hong Y Z, Xiao Y Z, et al. High production of laccase B from Trametes sp. in Pichia pastoris[J]. World Journal of Microbiology and Biotechnology, 2007, 23 : 741 - 745.
  • 8Cai M H, Zhou X S, Sun X Q, et al. Statistical optimization of medium composition for aspergiolide A production by marine-derived fungus Aspergillus glaucus [ J]. Journal of industrial microbiology and biotechnology, 2009, 36: 381 - 389.
  • 9Xiao Y Z, Tu X M, Wang J, et al. Purification, molecular characterization and reactivity with aromatic compounds of a laccase from basidiomycete Trametes sp. strain AH28-2 [ J ]. Applied Microbiology and Biotechnology, 2003, 60 : 700 - 707.
  • 10Ghibom Bhak, Minkyung Song, Seungyong Lee, et al.Reponse surface analysis of solid state growth of Pleurotus ostreatus mycelia utilizing whey permeate [ J ]. Biotechnology Letters, 2005, 27:1 537 - 1 541.

共引文献30

同被引文献49

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部