期刊文献+

基于数据场的总体布线拥挤度计算模型 被引量:2

Congestion Estimation Model for Global Routing Based on Data Fields
下载PDF
导出
摘要 现有的拥挤度评估方法都是基于布线边的当前使用量和历史使用量,无法评估布线边周围布线资源使用情况对拥挤度的影响。提出了一种数据场拥挤度建模方法,根据数据场中势能和场强分布情况,对布线边所在区域拥挤度和布线边周围不同方向的拥挤度差异进行计算,给出了基于数据场拥挤度模型的布线代价计算方法,并应用于模式布线算法和迷宫布线算法的改进。实验结果表明,该方法能够有效降低布线拥挤度。 The existing methods for congestion estimation are all based on current usage or historical usage of the routing edge,which cannot estimate effects of usage of routing resource around the edge on congestion.A data field method to model routing congestion was presented.Difference between congestion within edge region and congestion around edge region was calculated based on distribution of potential and strength in the data field.A routing cost calculation method was proposed based on data field congestion model to improve pattern routing and maze routing.Experiment results showed that this method was capable of reducing edge congestion effectively.
作者 孟畅 蔡懿慈
出处 《微电子学》 CAS CSCD 北大核心 2013年第2期296-300,共5页 Microelectronics
基金 国家自然科学基金资助项目(60976035)
关键词 总体布线 拥挤度估计 数据场 Global routing Congestion estimation Data field
  • 相关文献

参考文献5

二级参考文献44

  • 1谌志群,张国煊.文本挖掘研究进展[J].模式识别与人工智能,2005,18(1):65-74. 被引量:50
  • 2淦文燕,李德毅,王建民.一种基于数据场的层次聚类方法[J].电子学报,2006,34(2):258-262. 被引量:83
  • 3唐杰,梁邦勇,李涓子,王克宏.语义Web中的本体自动映射[J].计算机学报,2006,29(11):1956-1976. 被引量:98
  • 4Cohen W, Ravikumar P, Fienberg S. A comparison of string distance metrics for name-matching tasks//Proceedings of the IJCAI Workshop on Information Integration on the Web (IIWeb). Aeapulco, Mexico, 2003: 73-78.
  • 5Budanitsky A, Hirst G. Evaluating WordNet based measures of lexical semantic relatedness. Computational Linguistics, 2006, 32(1): 13-47.
  • 6Do H-H, Rahm E. COMA A system for flexible combination of schema matching approaches//Proceedings of the 28th International Conference on Very Large Data Bases(VLDB). Hong Kong, China, 2002:610- 621.
  • 7Melnik S, Garcia-Molina H, Rahm E. Similarity flooding: A versatile graph matching algorithm and its application to schema Matching//Proceedings of the 18th International Conference of Data Engineering (ICDE). San Jose, California, 2002. 117-128.
  • 8Isaac A, Meij L, Schlobach S, Wang S. An empirical study of instance based ontology matching//Proceedings of the 6th International Semantic Web Conference and the 2nd Asian Semantic Web Conference (ISWC/ASWC). Busan, Korea, 2007, 253 -266.
  • 9Wang S, Englebienne G, Schlobach S. Learning concept mappings from instance similarity//Proceedings of the 7th International Semantic Web Conference (ISWC). Karlsruhe, Germany, 2008:339- 355.
  • 10Udrea O, Getoor L, Miller R. Leveraging data and structure in ontology integration//Proceedings of the 26th International Conference on Management of Data (SIGMOD). Beijing, China, 2007:449-460.

共引文献101

同被引文献17

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部