期刊文献+

Research on fabric characteristics and borehole instability mechanisms of fractured igneous rocks 被引量:2

Research on fabric characteristics and borehole instability mechanisms of fractured igneous rocks
下载PDF
导出
摘要 There are favorable exploration prospects in igneous rock reservoirs. However, problems of borehole instability occur frequently during drilling igneous formations, which is a serious impediment to oil and gas exploration and production. The lack of systematic understanding of the inherent instability mechanisms is an important problem. A series of experiments were conducted on several igneous rock samples taken from the sloughing formations in the Tuha area in an attempt to reveal the inherent mechanisms of wellbore instability when drilling in fractured igneous rocks. Research methods involved slurry chemistry, analysis of micro-geological features (Micro-CT imaging, SEM), and rock mechanics testing. The experimental results indicated that clay minerals were widely distributed in the intergranular space of the diagenetic minerals, crystal defects, and microcracks. Drilling fluid filtrate would invade the rock along the microcracks. Tile invasion amount gradually increased over time, which constantly intensified the hydration and swelling of clay minerals, leading to changes in the microscopic structure of igneous rocks. Primary and secondary microcracks can propagate and merge into single cracks and thus reducing rock cohesion and the binding force along cleavage planes. Based on this result the authors propose that a key towards solving wellbore instability in igneous formations is that specific micro-geological characteristics of the igneous rocks should be taken into consideration in the design of antisloughing drilling muds. There are favorable exploration prospects in igneous rock reservoirs. However, problems of borehole instability occur frequently during drilling igneous formations, which is a serious impediment to oil and gas exploration and production. The lack of systematic understanding of the inherent instability mechanisms is an important problem. A series of experiments were conducted on several igneous rock samples taken from the sloughing formations in the Tuha area in an attempt to reveal the inherent mechanisms of wellbore instability when drilling in fractured igneous rocks. Research methods involved slurry chemistry, analysis of micro-geological features (Micro-CT imaging, SEM), and rock mechanics testing. The experimental results indicated that clay minerals were widely distributed in the intergranular space of the diagenetic minerals, crystal defects, and microcracks. Drilling fluid filtrate would invade the rock along the microcracks. Tile invasion amount gradually increased over time, which constantly intensified the hydration and swelling of clay minerals, leading to changes in the microscopic structure of igneous rocks. Primary and secondary microcracks can propagate and merge into single cracks and thus reducing rock cohesion and the binding force along cleavage planes. Based on this result the authors propose that a key towards solving wellbore instability in igneous formations is that specific micro-geological characteristics of the igneous rocks should be taken into consideration in the design of antisloughing drilling muds.
出处 《Petroleum Science》 SCIE CAS CSCD 2013年第2期212-218,共7页 石油科学(英文版)
基金 financial support from the National Natural Science Foundation of China(Grant No.U1262209)
关键词 Igneous rocks MICROCRACKS clay minerals HYDRATION INSTABILITY Igneous rocks, microcracks, clay minerals, hydration, instability
  • 相关文献

参考文献3

二级参考文献52

共引文献107

同被引文献24

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部