期刊文献+

套管式新型光生物反应器的性能初步实验 被引量:3

Preliminary experiment on performance of concentric-tube photobioreactor
下载PDF
导出
摘要 针对管式光生物反应器藻液中溶解氧及pH限制进一步规模扩大等因素,设计了一种套管新型内曝气式光生物反应器。以Chlorella vulgaris为培养对象,BG-11为培养基,以细胞干重为检测指标,同时检测藻液的溶氧量和pH,比较了小规模实验条件(锥形瓶,500 mL)和套管式新型光生物反应器(36 L)对微藻生物质积累的影响。结果表明,新型反应器和小规模实验条件相比,培养体积扩大了72倍,培养10 d时微藻的比生长率下降了33.2%,单位体积产率下降了69.8%。在整个培养过程中,藻液溶氧量为6.2~7.0 mg/L,未超过限值7.5 mg/L。通入气体为空气,藻液pH由7.5上升至9.0,处于微藻可适应范围(4.5~10.6),尚可通过在空气中混入CO2进行调节。 Gradient of dissolved oxygen and pH along the tube limit scale-up of the tubular photobioreactor. To solve the problems above, a new concentric-tube photobioreactor is introduced and preliminaryly tested by Chlorella vulgaris in BG-11 medium. The influence of small culture scale (500 mL conical flask) and concentric-tube (36 L) photobioreactor on the biomass concentration is studied by detecting the biomass concentration, dissolved oxygen and pH. The results show that after 72 times larger scale than the conical flask, the specific growth rate is decreased by 33.2% and the biomass productivity is decreased by 69. 8% in the concentric-tube photobioreactor. In the process of cultivation, the concentration of dissolved oxygen in the medium is ranging in 6. 2 - 7.0 mg/L, which is steady below 7. 5 mg/L that microalgae can stand with. Compressing air into the photobioreactor,pH is rising from 7.5 to 9.0 during 10 days which is suitable (4. 5 - 10. 6) for microalgae,but it can be controlled by CO2 which can be mixed into the air before compressed into the photobioreactor.
出处 《现代化工》 CAS CSCD 北大核心 2013年第4期120-123,共4页 Modern Chemical Industry
基金 天津大学内燃机燃烧学国家重点实验室自主课题资助项目
关键词 微藻 套管式 光生物反应器 扩大培养 micioalgae cultivation concentric-tube photobioreactor large-scale cultivation
  • 相关文献

参考文献11

  • 1Tsygankov AA. Laboratory scale photobioreactors[ J]. Applied Bio- chemistry and Microbiology,2001,37 (4) : 333 - 341.
  • 2Richmond A. Microalgal biotechnology at the turn of the millenni- um : a personal view [ J 1- Journal of Applied Phtcology ,2000,12 ( 3/ 4/5) :441 -451.
  • 3Camacho Rubio F, Acien Fernandez FG, Sanehez Perez JA, et al. Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture [ J ]. Bio- technology and Bioengineering, 1999,62( 1 ) :71 -86.
  • 4Moliua Grima E, Acien Fernandez FG, Gareia Camacho F, et al. Scale-up of tubular photobioreactors [ J ]. Journal of Applied Phyeol- ogy,2000,12 ( 3/4/5 ) :355 - 368.
  • 5张恒,杨俊红,井广宁,等.套管式光生物反应器:CN,20120132261.X[P].2012-04-27.
  • 6郝聚敏,郑江,黎中宝,陆斌,林耀江,王博,周文虹.3种微藻在特定波长下的光密度与其单位干重·细胞浓度间的关系研究[J].安徽农业科学,2011,39(28):17399-17401. 被引量:12
  • 7Wang Junfeng, Han Danxiang, Mihon R, et al. Effect of initial bio- mass density on growth and astaxanthin production of Haematococ- cus pluvialis in an outdoor photobioreactor [ J ]. Journal Applied Phycology ,2013,25 ( 1 ) :253 -260.
  • 8Morals MG, Vieira Casta JA. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide[ J ]. Energy conversion and management, 2007,48 ( 7 ) : 2169 -2173.
  • 9Morais MG,Vieira Casta JA. Biofixtion of carbon dioxide by spiruli- nasp and scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor [ J ]. Joumal of biotechnology, 2007, 129 (3) :439 -445.
  • 10Suh IS, Lee CG. Photobioreactor engineering: design and performance [J]. Biotechnol Bioprocess Engineering,2003,8(6) :313 -321.

二级参考文献8

共引文献11

同被引文献32

  • 1刘娟妮,胡萍,姚领,王雪青.微藻培养中光生物反应器的研究进展[J].食品科学,2006,27(12):772-777. 被引量:27
  • 2Gaurav K. Srivastava R. Singh R. Exploring biodiesel: Chemistry,biochemistry, and microalgal source[J]. International Journal ofGreen Energy, 2012,10 (8): 775-796.
  • 3Amaro H M,Guedes A C,Malcata F X. Advances and perspectives inusing microalgae to produce biodiesel[J]. Applied Energy, 2011,88(10): 3402-3410.
  • 4Davis R, Aden A, Pienkos P T. Techno-economic analysis ofautotrophic microalgae for fuel production[J], Applied Energy, 2011,88 (10): 3524-3531.
  • 5Jacob-Lopes E, Scoparo C H G. Franco T T. Rates of CO2 removal byAphanothece microscopica Nageli in tubular photobioreactors [J].Chemical Engineering and Processing'. Process Intensification,2008,47(8): 1365-1373.
  • 6Molina E,Fernandez J,Acien F.et al. Tubular photobioreactor designfor algal cultures[J]. Journal of Biotechnology, 2001,92(2): 113-131.
  • 7Imamoglu E, SukanE,Dalay M C. Effect of different culture mediaand light intensities on growth of Haematococcus pluvialis[J].International Journal of Natural and Engineering Sciences,2007, 1(2): 5-9.
  • 8Wang J, Han D, Sommerfeld M,et al. Effect of initial biomass densityon growth and astaxanthin production of Haematococcus pluvialis inan outdoor photobioreactor[ J]. Journal of Applied Phycology,2013,25 (1): 253-260.
  • 9Suh I , Lee C G. Photobioreactor engineering : Design andperformance[J]. Biotechnology and Bioprocess Engineering, 2003,8?6): 313-321.
  • 10Chun-Yen Chen, Kuei-Ling Yeh, Ritka Aisyah, et al. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production : A critical review [ J ]. Bioresource Technology, 2011, 102:71 -81.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部