期刊文献+

一类双边障碍问题的积极集算法

Active Set Strategy for A Kind of Bilateral Obstacle Problem
下载PDF
导出
摘要 双边障碍问题是一类应用十分广泛的问题.使用积极集算法求解带T-单调算子对应的双边障碍问题,建立了算法的单调收敛性定理. Bilateral obstacle problem has a wide range of applications. An algorithm based on active set strategy for bilateral obstacle problem with a T-monotone operator is developed. Furthermore, the monotone convergence theorem for our algorithm is eatablished.
出处 《宁夏大学学报(自然科学版)》 CAS 2013年第1期4-6,共3页 Journal of Ningxia University(Natural Science Edition)
基金 广东省自然科学基金资助项目(S2012040007993) 广东省教育厅育苗工程资助项目(2012LYM_0122)
关键词 双边障碍问题 T-单调函数 积极集算法 bilateral obstacle problem T-monotone function active set strategy
  • 相关文献

参考文献6

  • 1MOSCO U. An introduction to approximate solution of var- iational inequalities[M]. Roma: Cremonese, 1973.
  • 2HOPPER H W, KORNHUBER R. Adaptive multilevel methods for obstacle problems[J]. SIAM Journal on Nu- merical Analysis, 1994,31(2) :301-323.
  • 3KARKKAINEN T, KUNISCH K, TARVAINEN P. Augmented Lagrangian active set methods forobstacle problems[J]. Journal of Optimization Theory and Ap- plications, 2003,119 (3) : 499-533.
  • 4SCARPINI F. A numerical approach to the solution of some variational inequalities, variational inequalities and complementarity problems[M]. New York: John Wiley and Sons, 1980: 323-338.
  • 5M, ITO K, KUNISCH K. The pri- real-dual active set strategy as a semismooth Newton meth od[J]. SIAM Journal on Optimization, 2002, 13 (3) 865-888.
  • 6谢水连,许鸿儒,胡汉章.求解一类HJB方程的迭代算法[J].高校应用数学学报(A辑),2012,27(2):200-205. 被引量:2

二级参考文献8

  • 1Boulbrachene M, Haiour M. The finite element approximation of Hamilton-Jacobi-Bellman equations[J]. Computers and Mathematics with Applications, 2001, 41: 993-1007.
  • 2Forsyth P A, Labahn G. Numerical methods for controlled Hamilton-Jacobi-Bellman PDEs in finance[J]. Journal of Computational Finance, 2007, 11: 1-14.
  • 3Yong Jiongmin, Zhou Xunyu. Stochastic Controls: Hamilton Systems and HJB Equations[M]. New York: Springer, 1998, 1-33.
  • 4Zeng Jinping, Zhou Shuzi. A domain decomposition method for a kind of optimization problems[J]. Journal of Computational and Applied Mathematics, 2002, 146: 127-139.
  • 5Lions P L, Mercier B. Approximation numerique des equations de Hamilton-Jacobi- Bellman[J]. RAIRO, Analyse Numerique, 1980, 14: 369-393.
  • 6Hoppe R H W. Multigrid methods for Hamilton-Jacobi-Bellman equations[J]. Numerische Mathematik, 1986, 49: 239-254.
  • 7Sun M. Domain decomposition method for solving HJB equations[J]. Numerical Functional Analysis and Optimization, 1993, 14: 145-166.
  • 8Zhou Shuzi, Zou Zhanyong. A new iterative method for discrete HJB equations[J]. Numerische Mathematik, 2008, 111: 159-167.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部