摘要
2010年已研究了系统dxdt=x(1-k1x-k2x2)-xya+x2,dydt=y(μxa+x2-D)正解的有界性,正平衡点不稳定时系统至少存在一个稳定极限环,以及利用Hopf分支理论讨论了系统至少存在两个极限环的情况.进而研究此系统平衡点的拓扑性态,并对应给出轨线拓扑结构图,对先前的研究进行补充.
The following prey-predator system has been analyzed in 2010:dxdt=x(1-k1x-k2x2)-xya+x2,dydt=y(μxa+x2-D)and has gotten some results- positive solutions of the system are all bounded, the sy~.em has at least one stable limit cycle, and base on the theory of Hopf bifurcation, the system at least has two limit cycles un- der certain conditions. In this paper we concentrate on the topological features of cquilibra, and show the corresponding structure diagram of the trajectory of system, all play supplementary function on earlier studies.
出处
《闽江学院学报》
2013年第2期22-28,共7页
Journal of Minjiang University
基金
福建省教育厅科技规划项目(JA11294)