期刊文献+

K-g-框架的刻画 被引量:4

Characterizations of K-g-frames
下载PDF
导出
摘要 在Hilbert空间中定义了K-g-框架,探讨K-g-框架与g-框架的一些本质差别,通过合成算子对K-g-框架加以刻画. In this paper, K-g-frames are introduced. We study the essential distinctions between K-g- frames and g-frames, then give new characterizations of K-g-frames on the properties of their synthesis op- erators.
作者 周燕
出处 《闽江学院学报》 2013年第2期29-32,共4页 Journal of Minjiang University
基金 天元基金(11226099) 福州大学科技发展基金(2012-XY-21 2012-XQ-29) 福州大学科研启动项目基金(022410)
关键词 K-框架 K-g-框架 合成算子 K-frame K-g-frame synthesis operator
  • 相关文献

参考文献12

  • 1Duffin R J, Schaeffer A C. A class of nonharmonic Fourier series [ J ]. Trans Amer Math Soc, 1952,72:341 -366.
  • 2Eldar Y C. Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors [ J ]. Fourier Anal Appl, 2003,9( 1 ) :77 -96.
  • 3Daubechies I. Ten lectures on wavelets[ M]. Philadelphia: SIAM, 1992.
  • 4Heil C. A basis theory primer[ M ]. Boston: Birkhanse,2010.
  • 5Dudey Ward N E, Partington J R. A construction of rational wavelets and frames in Hardy-Sobolev space with application to system modelling[ J]. SIAM J Control Optim, 1998, 36( 1 ) :654 - 679.
  • 6Sun W C. G-frames and g-Riesz bases[ J]. Math Anal Appl,2006,322(1) :437 -452.
  • 7Gavruta P. Frames for operators [ J ]. Appl Comput Harmon Anal,2012,32:139 - 144.
  • 8Douglas R G. On majorization faetorization and range inelusion of operators on Hilbert space[ J]. Proe Amer Math Soc, 1966,17 (2) :413 -415.
  • 9Christensen O. An introduction to frames and Riesz bases[ M ]. Boston:Birkhauser,2003.
  • 10Y C Zhu. Characterizations of g-frames and g-Riesz bases in Hilbert spaces [ J ]. Acta Mathematica Sinica:English Series,2008,24 (10) .1 727 -1 736.

同被引文献34

  • 1丁明玲,朱玉灿.g-框架的稳定性[J].福州大学学报(自然科学版),2007,35(3):321-325. 被引量:10
  • 2Sun W C. G- frames and g- Riesz bases [ J ]. Math Anal Appl, 2006, 322 (1) : 437 -452.
  • 3Gavruta P. Frames for operators[J]. Appl Comput Harmon Anal, 2012, 32:139 -144.
  • 4Gavruta P. On the duality of fusion frames [ J]. Math Anal Appl, 2007, 333 (2) : 871 -879.
  • 5Christensen O, Goh S S. Pairs of oblique duals in spaces of periodic functions[ J]. Adv Comput Math, 2010, 32:353 -379.
  • 6Lopez J, Han D. Optimal dual frames for erasures[ J]. Linear Algebra Appl, 2010, 432:471 -482.
  • 7Pedro G M, Mariano A R, Demetrio S. Duality in reconstruction systems[J]. Linear Algebra Appl, 2012, 436:447 -464.
  • 8Eldar Y C. Sampling with arbitrary sampling and reconstruction spaces and oblique dual frames[ J]. Fourier Anal Appl, 2003, 9(1) : 77 -96. Christensen O, Eldar Y C. Oblique dual frames and shift - invariant spaces [ J ]. Appl Comput Harmon Anal, 2004, 17 : 48 - 68. Eldar Y C, Werther T. General framework for consistent sampling in Hilbert spaces[ J]. Int Wavelets Multi Inf Pro, 2005, 3 ( 3 ) : 347 - 359.
  • 9Eldar Y C. Sampling with arbitrary sampling and reconstruction spaces and oblique dual frames[ J]. Fourier Anal Appl, 2003, 9(1) : 77 -96.
  • 10Christensen O, Eldar Y C. Oblique dual frames and shift - invariant spaces [ J ]. Appl Comput Harmon Anal, 2004, 17 : 48 - 68.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部