期刊文献+

自正则化和重对数律的极限定理

Limit theorem for LIL of self-normalized sums
下载PDF
导出
摘要 设X,X1,X2,Λ是独立同分布的随机变量序列,记■。 Limit theorem for LIL of self-normalized sums YUAN Yu-ze ( Department of Mathematics, Minjiang University, Fuzhou, Fujian 350121, China) Abstract: Let X,X1 ,X2.… be i. i. d random sequences, setsn=n∑k=1Xi+V2n=n∑k=1x2k+ 且EX=0,EX2I(|X|≤x)is slowly varying at ~ ,we prove that, forb〉-1,limε ε-0 2(b+1)∞∑n=1(loglogn)b/nlognP(|sn/Vm|≥ε√2loglogn)=1/(b+1)√π)=Г(b+3/2)here Г( ·) is Gamma function.
作者 袁裕泽
机构地区 闽江学院数学系
出处 《闽江学院学报》 2013年第2期39-41,共3页 Journal of Minjiang University
关键词 极限定理 重对数律 自正则化和 limit theorem law. of iterated logarithm self-normalized sums
  • 相关文献

参考文献6

  • 1Gut A, Sparatu A. Precise asymptotics in law of the iterated logarithm[J], Ann Probab,2000,28(4) :1 870-1 883.
  • 2Bentkus V, GOtze F. The Berry-Esseen bound for student's statistic[J]. Ann Probab,1996(24) :491 -503.
  • 3Griffin P S, Kuelbs J D. Self-normalized laws of the iterated logarithm[J]. Ann Probab, 1989(17) :1 571 -1 601.
  • 4Shao Q M. Recent developments on self-normalize limit theorems [ C ]//Szyszkowicz B. Asymptotic Methods in Probability and Sta- tistics a volume in honour of M. Csirgo. Amsterdam : North-Holland, 1998:467 - 480.
  • 5Gine E, GOtze F, Mason D. M. When is the student t-statistic asymptotically standard normal [ J]. Ann Probab, 1997 (25): 1 514- 1 531.
  • 6Shao Q M. Self-normalized large deviations [ J ]. Ann Probab, 1997 (25) :285 -328.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部