期刊文献+

基于综合目标函数的神经网络多新息辨识算法 被引量:3

Multi-innovation identification algorithm of neural network based on generalized objective function
下载PDF
导出
摘要 为提高动态神经网络学习算法的辨识精度及抗噪性能,提出一种基于综合目标函数的多新息辨识算法。该算法基于多新息理论在最小均方误差目标函数中引入一辅助项构造综合目标函数,利用该目标函数进行网络输出层权值的训练,并采用牛顿法推导出输出层权值的递推计算公式。与已有二阶学习算法相比,新算法鲁棒性强,收敛速度快,辨识精度高。仿真结果验证了算法的有效性。 To improve the identification accuracy and robustness to noise of dynamic neural network learning algorithm, multi-in- novation identification algorithm based on a generalized objective function was presented. The generalized function based on multi-innovation theory was constructed by combining an anxiliary constraint term with the least mean square error. The weight matrix of output layer was trained using the generalized function. The recursive equations for training weight matrix of output layer were derived using Newton iterative algorithm. Compared with the existed second-order learning algorithm, this algorithm has stronger robustness, better convergent rate and accuracy. Simulation results show the efficiency of the new algorithm.
出处 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第2期165-169,共5页 Journal of China University of Petroleum(Edition of Natural Science)
基金 国家重大专项(2011ZX05021-003)
关键词 系统辨识 综合目标函数 神经网络 多新息 system identification generalized objective function neural network multi-innovation
  • 相关文献

参考文献14

  • 1ROJAS I, POMARES H, BERNIER J L, et al. Time se- ries analysis using normalized PG-RBF network with re- gression weights [ J ]. Neurocomputing, 2002,42 (1/4) : 267-285.
  • 2LACY S, L, BEMSTEIN D S. Subspace identification for non-linear systems with measured-input non-linearities [ J ]. International Journal of Control, 2005,78(12) :906-925.
  • 3ZAPRANIS A, ALEXANDRIDIS A. model identification in wavelet neural networks framework. Proceedings of the 5th IFIP Conference on Artificial Intelligence Applications & Innovations, Thessaloniki, Greece, April 23-25, 2009 [ C ]. Berlin : Springer, 2009.
  • 4华陈权,王昌明,耿艳峰,王晓智.基于神经网络的槽式孔板湿气计量修正模型[J].中国石油大学学报(自然科学版),2009,33(6):152-156. 被引量:3
  • 5SINGH Y P, ROYCHOWDHURY P. Dynamic tunneling based regularization in feedforward neural networks [ J ]. Artificial Intelligence,2001,131 (1/2) : 55-71.
  • 6KONSTANTINOS P F. Biological engineering applications of feedforward neural networks designed and parameter- ized by genetic algorithms [ J ]. Neural Networks, 2005,18 (7) :934-950.
  • 7YU J B, WANG S J, Xi L F. Evolving artificial neural networks using an improved PSO and DPSO [ J ]. Neuro- computing, 2008,71 (4/6) : 1054-1060.
  • 8邵红梅,安凤仙.一类训练前馈神经网络的梯度算法及收敛性[J].中国石油大学学报(自然科学版),2010,34(4):176-178. 被引量:5
  • 9CHEN D S, RAMESH C J. A robust back propagation learning algorithm for function approximation [ J ]. IEEE Trans on Neural Networks, 1994,5 ( 3 ) :467-479.
  • 10徐宝昌,罗雄麟,王金山.一种基于综合目标函数的神经网络学习算法[J].中国石油大学学报(自然科学版),2009,33(6):95-99. 被引量:4

二级参考文献42

共引文献49

同被引文献59

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部