期刊文献+

基于动态结构保持主元分析的故障检测方法

Fault detection method based on dynamic structure preservation principal component analysis
下载PDF
导出
摘要 为充分利用表征过程运行工况的数据特征信息,提高化工过程的故障检测性能,提出一种基于动态结构保持主元分析(DSPPCA)的过程故障检测方法。首先对原始数据采用变量相关性分析建立自回归模型,构建包含动态特征的数据集,进一步综合考虑主元分析法(PCA)和局部线性嵌入(LLE)流形学习算法中数据点之间的近邻关系,融合得出新的目标函数,同时,运用局部线性回归的方法获得高维样本的嵌入映射,特征提取后在特征空间和残差空间分别构造监控统计量进行故障检测。Swiss-roll数据集的降维结果及TE过程的仿真研究结果表明,DSPPCA算法可以取得较好的特征提取效果,具有较高的故障检测性能。 In order to make full use of the feature information of data in the chemical process, a fauh detection method based on dynamic structure preservation principal component analysis was proposed to improve the performance and efficiency for fault detection. It firstly established auto-regression model through correlation analysis so that the dynamic feature sets could be obtained to characterize the original data. Furtherly, principal component analysis and locally linear embedding were fused together to obtain a new objective function. Besides,locally linear embedding algorithm could preserve the neighbor relationship between data collected. At the same time, local linear regression was used to find the projection that best approximated the mapping from high-dimensional samples to the embedding for on-line application furtherly. Statistics were constructed in the two spaces for process monitoring after feature extraction respectively. Simulation results of Tennessee Eastman process and Swiss-roll data show that DSPPCA-based method is more effective for feature extraction and process monitoring.
出处 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第2期170-175,共6页 Journal of China University of Petroleum(Edition of Natural Science)
基金 国家自然科学基金项目(61273160) 山东省自科学基金项目(ZR2011FM014) 中央高校基本科研业务费专项(12CX06071A 10CX04046A) 山东省优秀中青年科学家科研奖励基金项目(BS2012ZZ011)
关键词 动态结构保持主元分析 流形学习 相关性分析 特征提取 故障检测 dynamic structure preservation principal component analysis manifold learning correlation analysis feature extraction fault detection
  • 相关文献

参考文献13

  • 1RUSSELL L H, BRAATZ R D. Fault detection and diag- nosis in industrial system [ M ]. London : Springer VerlagPress, 2001:31-94.
  • 2LEE J M, YOO C K, CHOI S W, et al. Nonlinear process monitoring using kernel principal component a- nalysis [ J]. Chemical Engineering Science, 2004, 59 ( 1 ) :223-224.
  • 3YIN S, DINGS X, HAGHANI A, et al. A comparison study of basic data-driven fault diagnosis and process mo- nitoring mehods on the benchmark Tennessee Eastman process [J].Journal of Process Control, 2012,12 (9) : 1567-1581.
  • 4邓晓刚,田学民.生产过程故障诊断方法研究现状及展望[J].石油大学学报(自然科学版),2005,29(6):151-157. 被引量:12
  • 5ODIOWEI P P, CAO Y. State-space independent compo- nent analysis for nonlinear dynamic process monitoring [J ]. Chemometrics and Intelligent Laboratory Systems, 2010,103 ( 1 ) :59-65.
  • 6邓晓刚,田学民.基于动态独立成分的单类支持向量机方法及其在故障诊断中的应用[J].中国石油大学学报(自然科学版),2012,36(3):187-191. 被引量:2
  • 7SHAO Ji-dong, RONG Gang. Nonlinear process monito- ring based on maximum variance unfolding projection [J]. Expert Systems with Applications, 2009,36 (8) : 11332-11340.
  • 8ZHANG Mu-guang, GE Zhi-qiang, SONG Zhi-huan, et al. Global local structure analysis model and its applica- tion for fault detection and identification [ J ]. Industrial & Engineering Chemistry Research, 2011,50( 11 ) :6837- 6848.
  • 9张妮,田学民.基于等距离映射的非线性动态故障检测方法[J].上海交通大学学报,2011,45(8):1202-1206. 被引量:13
  • 10LI Ben-wei, ZHANG Yun. Supervised locally linear em- bedding projection (SLLEP) for machinery fault diagno- sis [ J ]. Mechanical Systems and Signal Processing, 2011,25(8) :3125-3134.

二级参考文献72

  • 1陈亚华,蒋丽英,郭明,王树青.基于多向Fisher判据分析的间歇过程性能监控[J].吉林大学学报(信息科学版),2004,22(4):384-387. 被引量:11
  • 2鹿卫国,戴亚平,高峰.一种基于概率分布估计的水电机组故障预警方法[J].中国电机工程学报,2005,25(4):94-98. 被引量:11
  • 3邵超,黄厚宽,赵连伟.一种更具拓扑稳定性的ISOMAP算法[J].软件学报,2007,18(4):869-877. 被引量:20
  • 4Russell L H, Braatz R D. Fault detection and diagnosis in industrial system[M]. London: Springer Verlag Press, 2001.
  • 5Lee J M, Yoo C K, Choi S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59 (1) : 223-224.
  • 6Li Min, Xu Jinwu. Multiple manifolds analysis and its application to fault diagnosis[J]. Mechanical Systems and Signal Processing, 2009, 23(8): 2500 2509.
  • 7Shao Ji-dong, Rong Gang. Nonlinear process monito ring based on maximum variance unfolding projections [J]. Expert Systems with Applications, 2009, 36 (8) : 11332-11340.
  • 8Elizaveta Levina, Ann Arbor Mi. Maximum likelihood estimation of intrinsic dimension[J]. Advances in Neural Information Processing Systems, 2004, 17 :777-784.
  • 9Tenenbaum J B, Vin de Silva, Landford J C. A glob al geometric framework of nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323.
  • 10Downs J J, Vogel E F. A plant-wide industrial process control problem[J].Computers and ChemicalEngineering, 1993, 17(3): 245-255.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部