期刊文献+

Norm Properties of Y-numerical Radii 被引量:1

Norm Properties of Y-numerical Radii
下载PDF
导出
摘要 Given an n×n complex matrix A and an n-dimensional complex vector y=(ν1 , ··· , νn ), the y-numerical radius of A is the nonnegative quantity ry(A)=max{n∑j=1ν*jAx︱:Axj︱: x*jxj=1,xj ∈Cn}.Here Cn is an n-dimensional linear space overthe complex field C. For y = (1, 0, ··· , 0) it reduces to the classical radius r(A) =max {|x*Ax|: x*x=1}.We show that ry is a generalized matrix norm if and only ifn∑j=1νj≠ 0.Next, we study some properties of the y-numerical radius of matrices andvectors with non-negative entries. Given an n × n complex matrix A and an n-dimensional complex vector y = (v1, ..., vn), the y-numerical radius of A is the nonnegative quantity ry(A) = max{|∑ j=1^nvjxjAxj|}xjxj=1,xj∈C^n}Here C^n is an n-dimensional linear space over the complex field C. For y = (1,0,…,0) it reduces to the classical radius r(A) =max{|x^*Ax|: x^*x = 1}. We show that ry is a generalized matrix norm if and only if ∑j=1 ^nvj≠0.Next, we study some properties of tile y-numerical radius of matrices andvectors with non-negative entries.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2013年第1期69-76,共8页 数学季刊(英文版)
基金 Foundation item: Supported by the Natural Science Foundation of Hubei Province(B20114410)
关键词 numerical range numerical radius generalized matrix norm numerical range numerical radius generalized matrix norm
  • 相关文献

参考文献4

  • 1GOLDBERG M, TADMOR E. On the numerical radius and its applications[J]. Linear Algebra and Appl, 1982, 42: 263-284.
  • 2GOLDBERG M, STKAUS E G. Norm properties of C-numerical radii[J]. Linear Algebra and Appl, 1979, 24: 113-131.
  • 3GOLDBERG M, TADMOR E, ZW~AS G. Numerical radius of positive matrices[J]. Linear Algebra and Appl, 1975, 12: 209-214.
  • 4GOLDBERG M, TADMOR E, ZWAS G. The numerical radius and spectral matrices[J]. Linear and Multi- linear Algebra, 1975, 2: 317-326.

同被引文献8

  • 1CRAWFORD C R. A stable generalized eigenvalue problem[J]. SIAM Journal on Numerical Analysis, 1976, 13(6): 854-860.
  • 2DAS K J, CRAVEN B D. Linearity and weak convergence on the boundary of numerical range[J]. Journal of the Australian Mathematical Society, 1983, 35A: 221-226.
  • 3EMBRY M R. The numerical range of an operator[J]. Pacific Journal of Mathematics, 1970, 32: 647-650.
  • 4HALMOS P R. A Hilbert Space Problem Book[M]. Von Nostrand: New York, 1967.
  • 5PSARRAKOS P J, TSATSOMEROS M J. Numerical range: (in) a matrix nutshell[J]. Mathematical Notes, 2002, 45(2): 241-249.
  • 6SHERMAN M D, SMITH R L. Principally normal matrices[J]. Linear Algebra and its Applications, 2013, 438: 2617-2627.
  • 7WANG Kuo-zhong, WU Pei-yuan, GAU Hwa-long. Crawford numbers of powers of a matrix[J]. Linear Algebra and its Applications, 2010, 433: 2243-2254.
  • 8ZHANG Hai-yan, DOU Yan-ni, WANG Mei-feng, et al. On the boundray of numerical ranges of operators[J]. Applied Mathematics Letters, 2011, 24: 620-622.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部