期刊文献+

一个阿贝尔积分根的数目的下界(英文)

A lower bound for the number of zeroes about an Abelian integral
下载PDF
导出
摘要 霍尔普夫分支是动力系统分支理论中一个重要的部分,几乎所有的问题都和非退化中心附近的极限环的数目以及扰动相关.本文研究了一个近哈密尔顿系统x=H(x,y)y(1+x)+εP(x,y),y=-H(x,y)x(1+x)+εQ(x,y),其中H(x,y)=y2/2+x2k/(2k),k≥1.通过利用霍尔普夫极限环分支理论,得到相应的阿贝尔积分孤立零点的最大个数的下界,由此给出了最大数目极限环的下界. Hopf bifurcation is an important part of bifurcation theory of dynamical systems. Almost all known works are concerned with the bifurcation and number of limit cycles near a nondegenerate focus or center. In this paper, we study a polynomial near-Hamiltonian system where H(x,y)=yZ/2%-xZk/(2k),k≥1. By using a general theorem on Hopf bifurcation of limit cycles, a lower bound for the maximum number of isolated zeroes of the corresponding Abelian integral is gived, which give a lower bound for the maximum number of limit cycles.
出处 《浙江大学学报(理学版)》 CAS CSCD 2013年第3期249-254,共6页 Journal of Zhejiang University(Science Edition)
基金 Supported by the Natural Science Foundation of Nantong University(11Z059)
关键词 阿贝尔积分 下界 极限环 Abelian integral lower bound limit cycle
  • 相关文献

参考文献9

  • 1HILBERT D. Mathematical problems (NEWTON M, Transl. ) [J]. Bull Amer Math, 1902,8 : 437-479.
  • 2CHRISTOPHER J, LLOYD G. Polynomial systems: A lower bound for the Hilbert numbers[J]. Proc R Soc Loud: Ser A,1995,450(1938) :219-224.
  • 3ILYASHENKO Y. Centennial history of Hilbert's16th problem[J]. Bull Amer Math, 2002,8 : 437-479.
  • 4LI J. Hilbert's 16th problem and bifurcations of planar polynomial vector fields[J]. International Journal of Bifurcation and Chaos, 2003,13 ( 1 ) : 47-106. S.
  • 5CHLOMIUK D. Algebraic and geometric aspects of the theory of polynomial vector fields, Bifurcations and periodic orbits of vector fields[J]. NATO ASI: Ser C, 1993,408:429-467.
  • 6SMALE S. Mathematical problems for the next century[J]. Math Intelligencer, 1998,20(2) : 7-15.
  • 7GASULL A, LI C, LIU C. On the number of limit cycles bifurcating from a non-global degenerated center [J]. Journal of Mathematical Analysis and Applications, 2007,329 :268-280.
  • 8HAN M, JIANG J, ZHU H. Limit cycle bifurcations in near-hamiltonian systems by perturbing a nilpotent center[J ] International Journal of Bifurcation and Chaos, 2008,18(10) : 3013-3027.
  • 9HAN M. On Hopf cyclicity of planar systems[J]. Journal of Mathematical Analysis and Applications, 2000,245 : 404-422.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部