摘要
霍尔普夫分支是动力系统分支理论中一个重要的部分,几乎所有的问题都和非退化中心附近的极限环的数目以及扰动相关.本文研究了一个近哈密尔顿系统x=H(x,y)y(1+x)+εP(x,y),y=-H(x,y)x(1+x)+εQ(x,y),其中H(x,y)=y2/2+x2k/(2k),k≥1.通过利用霍尔普夫极限环分支理论,得到相应的阿贝尔积分孤立零点的最大个数的下界,由此给出了最大数目极限环的下界.
Hopf bifurcation is an important part of bifurcation theory of dynamical systems. Almost all known works are concerned with the bifurcation and number of limit cycles near a nondegenerate focus or center. In this paper, we study a polynomial near-Hamiltonian system where H(x,y)=yZ/2%-xZk/(2k),k≥1. By using a general theorem on Hopf bifurcation of limit cycles, a lower bound for the maximum number of isolated zeroes of the corresponding Abelian integral is gived, which give a lower bound for the maximum number of limit cycles.
出处
《浙江大学学报(理学版)》
CAS
CSCD
2013年第3期249-254,共6页
Journal of Zhejiang University(Science Edition)
基金
Supported by the Natural Science Foundation of Nantong University(11Z059)
关键词
阿贝尔积分
下界
极限环
Abelian integral
lower bound
limit cycle