期刊文献+

多源验前信息下基于证据理论的ML-II融合方法

Fusion of Information of Multiple Sources Based on Evidence Theory and ML-II Theory
下载PDF
导出
摘要 在复杂新型产品的可靠性评估中,试验的样本量通常较小,而Bayes方法在小样本统计推断中比经典统计方法更为适用。针对可靠性工程中遇到的验前信息的多源性问题,给出了一种基于证据理论的ML-II融合方法。在融合过程中考虑了信息源的可信性,减小了可信度低的信息源对评估结果的影响。以电子产品为例,算例实验表明了该方法在有"干扰信息源"存在的情况下的评估结果的有效性和合理性。 The sizes of experiment samples are usually small in the reliability evaluation of comprehensive new products. In this case, Bayesian statistical method is generally more suitable than the classical methods and has thus been widely used in the process of reliability assessment. The situation is that the prior information comes from different sources. A ML-II fusion method based on evidence theory is proposed. The confidence levels of the information sources are taken into consideration and the problem caused by the sources with low confidence can be avoided. Using electric products, numerical examples are given to illustrate the effectiveness of the proposed approach when there is "noisy information source".
机构地区 西北工业大学
出处 《火力与指挥控制》 CSCD 北大核心 2013年第4期121-124,共4页 Fire Control & Command Control
关键词 证据理论 可靠性 ML-II方法 信息融合 evidence theory reliability ML-II method information fusion
  • 相关文献

参考文献12

  • 1Dempster A P. Upper and Lower Probabilities Induced by a Muhivalued Mapping [J].Annals of Mathematical Statistics, 1967, (38) : 325-339.
  • 2Shafer G A. Mathematical Theory of Evidence [M]. Princeton, New Jersey: Princeton University Press, 1976.
  • 3Ge X j, He Y, Yao Y f. The Study of Evidence Theory from Two-dimensional to Multi-Dimensional Synchronization Fusion[ C ]//Proceedings of the Third International Conferenceon Modelling and Simulation ICMS2010, 2010.
  • 4Song X Y, Li Y C, Li D D,et al. Application of Kernel C-means Clustering and Dempster-Shafer Theory of Evi- dence in Power Transformers Fault Diagnosis [C]//2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery ( FSKD 2010), 2010.
  • 5Yazdani A, Ebrahimi T, Hoffmann U. Classification of EEG Signals Using Dempster Shafer Theory and a K-nearest Neighbor Classifier [ C ]//2009 4th International IEEE/EMBS Conference on Neural Engineering, 2009.
  • 6Jin H b, Lan J q,Xu J. Target Attribute Identification Based on Multi-class SVM and D-S Evidence Theory [C]//Pro- ceedings of the 2009 International Conference on Computa- tional Intelligence and Software Engineering, 2009.
  • 7Simon C, Weber P, Evstikoff A. Bayesian Networks Inference Algorithm to Implement Dempster Shafer Theory in Reliabil- ity Analysis [J]. Reliability Engineering & System Safety, 2008, 93(7 ):950-963.
  • 8冯静.基于证据理论的可靠性信息融合方法研究[J].计算机仿真,2009,26(12):82-85. 被引量:6
  • 9Smets P, Kennes R. The Transferable Belief Model [ J ]. Ar- tifcialIntelligence, 1994, (66): 191-243.
  • 10Smets P. Decision Making in the TBM: the Necessity of the Pignistic Transformation [J].International Journal of Ap- proximate Reasoning , 2005, ( 38 ): 133-147.

二级参考文献6

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部