期刊文献+

基于ARCH效应的黄河高寒区水资源预报分析 被引量:1

Hydrological forecast for the upper Yellow River high cold region based on conditional heteroskedasticity
原文传递
导出
摘要 黄河高寒区水资源受气候变化影响,自演化过程中表现出持续性、波动性等非平稳特征。水文条件异方差即ARCH效应的存在,增加了寒旱区水资源管理的风险和不确定性。本文以黄河源区出口控制站-吉迈水文站1958-2011年,共计54年水文资料为研究基础,分析水文条件异方差性存在特性、来源及对于区域水资源管理的影响;建立能够反映ARCH效应的水文过程预报模型,进一步提高预报精度、为区域水资源管理提供可靠基础。 Affected by climate changing,the hydrological time series in the upper Yellow River high cold region demonstrate persistent,volatility and other non-stationary features.Conditional heteroskedasticity(ARCH effect) exists in these hydrological time series,which leads to an increase in the risk and uncertainty of modern water resources management.In this paper,we use 54-years time series of monthly runoff data recorded at the Jimai hydrological station to study the characteristics and origin of such heteroscedasticity and its effect on regional water resources management.And we develop a hydrological process prediction model that can reduce the ARCH effects and improve prediction accuracy.This model would provide a reliable basis for regional water resources management.
出处 《水力发电学报》 EI CSCD 北大核心 2013年第2期101-107,113,共8页 Journal of Hydroelectric Engineering
基金 国家自然基金重点项目(50939004) 国家科技重大专项(2009zx07106-01) 华北水利水电学院高层次人才引进计划资助项目<水库群补偿机理及补偿效益计算研究(200926)>
关键词 水文学 气候变化 高寒区水资源 ARCH效应 hydrology climate change water resources in high cold region conditional heteroskedasticity
  • 相关文献

参考文献11

二级参考文献117

共引文献415

同被引文献23

  • 1马灵玲,占车生,唐伶俐,姜小光.作物需水量研究进展的回顾与展望[J].干旱区地理,2005,28(4):531-537. 被引量:36
  • 2田俊武,尚松浩,孙丽艳,温守光.山西潇河灌区参考作物腾发量和降水的随机特性[J].农业工程学报,2005,21(10):26-30. 被引量:10
  • 3Wang W, Xing W, Shao Q, et al. Changes in reference evapotranspiration across the Tibetan Plateau: Observations and future projections based on statistical downscaling[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(10): 4049-4068.
  • 4Liu H, Erdem E, Shi J. Comprehensive evaluation of ARMA-GARCH (-M) approaches for modeling the mean and volatility of wind speed[J]. Applied Energy, 2011, 88(3): 724-732.
  • 5Sun Huaiwei, Yan Dong, Zhao Na, et al. Empirical investigation on modeling solar radiation series with ARMA-GARCH models[J]. Energy Conversion and Management, 2015, 92(6): 385-395.
  • 6Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[J]. Econometrica: Journal of the Econometric Society, 1982, 50(4): 987-1007.
  • 7Bollerslev T. Generalized autoregressive conditional heteroskedasticity[J]. Journal of econometrics, 1986, 31(3): 307-327.
  • 8Kang S H, Yoon S M. Modeling and forecasting the volatility of petroleum futures prices[J]. Energy Economics, 2013, 36(6): 354-362.
  • 9Reisen V A, Sarnaglia A J Q, Reis N C, et al. Modeling and forecasting daily average PM 10 concentrations by a seasonal long-memory model with volatility[J]. Environmental Modelling & Software, 2014, 51(1): 286-295.
  • 10Glosten L R, Jagannathan R, Runkle D E. On the relation between the expected value and the volatility of the nominal excess return on stocks[J]. The Journal of Finance, 1993, 48(5): 1779-1801.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部