期刊文献+

玻纤增强大豆蛋白复合材料的制备工艺及性能研究 被引量:1

The Research of Preparation Technology and Performance of SPI Enhanced by GF
下载PDF
导出
摘要 采用大豆蛋白(SPI)和玻璃纤维(GF)作原料,用传统的热压成型方法来制备大豆蛋白/玻纤复合材料。相比长GF,加入短GF的SPI/GF复合材料的拉伸强度要高,但是断裂伸长率略低;随GF用量的增加,拉伸强度和流动性逐渐变大,吸水率和硬度逐渐变小。当GF用量为5份时,复合材料拉伸强度达到最大,相比纯SPI提高了206.5%。 The soybean separated protein/glass fibre (SPI/GF) composites were prepared through hot pressing method with GF and SPI as raw material.Comparing long GF,the tensile strength of SPI/GF compos ites with short GF is larger, but elongation at break is lesser. With GF content adding,tensile strength and melt flow change large gradually, water absorption and hardness change small gradually. When the GF content is 5%,the tensile strength of composites attains maximum, which is 206.5% of the tensile strength of pure SPI.
出处 《塑料助剂》 2013年第2期34-38,共5页 Plastics Additives
关键词 大豆蛋白 玻璃纤维 复合材料制备工艺 性能 sdybean seperated protein glass fibre composite preparation technology performance
  • 相关文献

参考文献2

二级参考文献17

  • 1Shih Frederick F. J American Oil Chemists' Society, 1994, 71(11): 1281.
  • 2lin Y, Hsleh F, HuffH E. Appl Polym Sci, 1997, 65; 695.
  • 3Carp D J, Bartholomai G B, Relkin P, et al. Colloids, Surf B:Biointerfaces, 2001, 21 : 163.
  • 4Baldwin E A, Nisperos M O, Chen X, et al. Postharvest Biolog Technol, 1996, (9): 151.
  • 5Sue H J, Wang S, Jane J L. Polymer, 1997, 38 (20) : 5035.
  • 6Otaigbe J U, Adams D O, Environ J. Polym Degrad, 1997, 5(4) : 199.
  • 7Tkaczyk A H, Otaigbe J U, Ho K L G. J Polym Environ, 2001,9 (1): 19.
  • 8Mo X Q, Hu J, Sun X S, et al. Industr Crops Product, 2001,(14) : 1.
  • 9Lodha P, Netravali A N. J Mater Sci, 2002, 37 (17): 3657.
  • 10Rhim J W, Gennadios A, Weller C L, et al. Industr Crops Product, 1998, (8): 195.

共引文献39

同被引文献36

  • 1贾云芝,陈志周.还原剂对大豆蛋白/聚乙烯醇复合薄膜性能的影响[J].农业工程学报,2012,28(S1):312-316. 被引量:14
  • 2Erickson D R. Practical Handbook of Soybean Processingand UtilizationfM]. St. Louis, Missouri : Aocs Press andUnited Soybean Board, 1993: 387-391.
  • 3Myers D J. Industrial Applications for Soy Protein andPotential for Increased Utilization[J]. Cereal Foods World,1993, 38(5) : 355-360.
  • 4Mrinal Pednekar, Amit K Das, Rajalakshmi V,et al.Radiation Processing and Functional Properties of Soybean[J]. Radiation Physics and Chemistry, 2010,79: 491-494.
  • 5Lee J E,Kim K M. Characteristics of Soy Protein Isolate-Montmorillonite Composite Films [J]. Journal of AppliedPolymer Science, 2010,118(4) : 2257-2263.
  • 6Kumar P, Sandeep K P, Alavi S, et al. Preparation andCharacterization of Bio-Nanocomposite Films Based on SoyProtein Isolate and Montmorillonite Using Melt Extrusion[J]. Journal of Food Engineering, 2010,100 : 480-489.
  • 7Kumar Rakesh,Wang Linxiang, Zhang Lina. Structure andMechanical Properties of Soy Protein Materials Plasticizedby Thiodiglycol[J], Journal of Applied Polymer Science,2009, 111(2): 970-977.
  • 8Ventureira J L, Martinez EN, An6 n M C. Effect of AcidTreatment on Structural and Foaming Properties of SoyAmaranth Protein Mixtures [J]. Food Hydrocolloids,2012,29(2) : 272-279.
  • 9Ru Z-Henestrosa V P, Sdnchez C C, Pedroche J J, et al.Improving the Functional Properties of Soy Glycinin byEnzymatic Treatment Adsorption and Foaming Characte-ristics[J]. Food Hydrocolloids, 2009,23(2) : 377-386.
  • 10Martinez K D,Sanchez C C,Patino J M R,et al.Interfacial and Foaming Properties of Soy Protein and TheirHydrolysates[J]. Food Hydrocolloids, 2009,23(8):2149-2157.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部