期刊文献+

计算机视觉中的Markov随机场方法 被引量:11

MARKOV RANDOM FIELD METHODOLOGY IN COMPUTER VISION
下载PDF
导出
摘要 Markov随机场方法是计算机视觉中一个引人注目的新研究方向。该文论述了基于Markov随机场模型的分析框架和有关文献,评述了用于图像分割和复原的分析方法,探讨了它的发展动向。 Markov random field methodology is a new noticeable research field in computer vision. In this paper, a general analysis framework and relative references of MRF model-based methodology are presented, the approaches for image segmentation and restoration are reviewed, and a few possible trends are discussed as well.
出处 《电子科学学刊》 CSCD 2000年第6期1028-1037,共10页
关键词 MARKOV随机场 计算机视觉 图像处理 Markov random field, Computer vision
  • 相关文献

参考文献7

二级参考文献6

  • 1王勇,吴立德.图象恢复和边缘提取的后验均值方法[J].电子学报,1994,22(2):70-75. 被引量:6
  • 2Zhuang X,IEEE Trans Image Processing,1996年,5卷,9期,1293页
  • 3Zhuang X,IEEE Trans Pattern Anal Machine Intell,1992年,14卷,1期,19页
  • 4Zhang J,IEEE Trans Image Processing,1996年,5卷,7期,1208页
  • 5Zhang J,IEEE Trans Image Processing,1995年,4卷,1期,19页
  • 6Zhang J,IEEE Trans Image Processing,1993年,2卷,1期,27页

共引文献16

同被引文献79

  • 1仲思东,熊军,刘勇.基于全周多视角的三维重建技术[J].机器人,2004,26(6):558-562. 被引量:7
  • 2王克奇,石岭,白雪冰,王业琴.基于吉布斯-马尔可夫随机场的板材表面纹理分析[J].东北林业大学学报,2006,34(4):8-9. 被引量:4
  • 3杨帆,廖庆敏.基于图论的图像分割算法的分析与研究[J].电视技术,2006,30(7):80-83. 被引量:16
  • 4李旭超,朱善安.图像分割中的马尔可夫随机场方法综述[J].中国图象图形学报,2007,12(5):789-798. 被引量:64
  • 5S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. 1EEE Trans.on Pattern Analysis and Machine Intelligence, PAM1 - 6:721 - 741, Nov. 1984.
  • 6C. - h. Wu and P. C. Doerschuk. Tree approximations to Markov random_elds. IEEE Trans. on Pattern Analysis and Machine Intelligence, 17(4) : 391 - 402, April 1995.
  • 7J. Konmd and E. Dubois, "Bayesian Estimation of Motion Vector Fields," IEEE Trans. Pattern Analysis and Machine Intelligence,vol. 14, no. 9, pp. 910-927, Sept. 1992.
  • 8J.L. Marroquin, B.C. Vemltri, S. Botello, F. Calderon, and A. Fernandez - Bouzas, "An Accurate and Efficient Bayesian Method for Automatic Segmentation of Brain MRI," IEEE Trans. Medical Imaging, vol. 21, no. 8, pp. 934 - 945, 2002.
  • 9Sanjiv KUMAR, Discriminative Martial HEBERT. Framework for Discriminative Random Fields :A Contextual Interaction in Classification[C].IEEE International Conference on Computer Vision 2003(2): 1150-1157.
  • 10Ashutosh Saxena, Sung H. Chung , Andrew Y. Ng. 3-D Depth Reconstruction from a Single Still Image[J]. Computer Vision, 2008, 76: 53-69.

引证文献11

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部