期刊文献+

改进的Fp-Growth数据关联挖掘算法研究

Improved Fp-Growth Data Association Mining Algorithm
下载PDF
导出
摘要 改进后的Fp-Growth挖掘算法适用于对大型数据库的数据关联规则的挖掘,基于一种新的数据库分隔方法来分隔数据库,并对分隔得到的各数据库子集用算法进行约束频繁项集挖掘。改进的数据库划分策略克服了占用内存大的缺陷,提高了挖掘速度,实时性更强。 This paper proposes an improved Fp-Growth algorithm,the improved Fp-Growth algorithm applied to a large database of data mining of association rules,based on a new database partition method to separate the database,and to get the database subset separated with algorithm for constrained frequent item-sets mining.The improved database partitioning strategy overcomes the defect of using too much memory,enhances the speed of mining,and strengthens the practicability.
作者 邹永平
出处 《河北能源职业技术学院学报》 2013年第1期64-66,70,共4页 Journal of Hebei Energy College of Vocation and Technology
关键词 Fp-Growth挖掘算法 数据关联 Fp-Growth mining algorithm data association
  • 相关文献

参考文献4

  • 1N. Pasquier, YBastide, R. Taouil, and L. Lakhal. Closed set based discovery of small covers for association rules [ J ]. Proc. BDA conL,October 1999.361--381.
  • 2Brachman, R. , and Anand,T. The Process of Knowledge Dis- covery Databases [ J ] : A Human - Centered Approach, In Advance in Knowledge Discovery and DatMining, 37--58, eds. U. Fryyad, G. Piatetsky--Shapiro. P. Smyth and R. Uthurusamy. Menlo Park. Calif, APress. 1996.
  • 3Jackson G. A. , Leclair R. S. , Ohmer C. M. , et al. Rough set applied to materials data. Acta Material ia, 1996,44 ( 11 ). 4475--4484.
  • 4Wang Dexing, Hu Xuegang, Wang Hao. The Research on Model of MiningAssociation Rules Based on Quantitative Extended Concept Lattice [ J ]. IEEE The First International Conference on Machine Learning and Cybernetics, Nov. 4 - 5,2002, Beijing.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部