期刊文献+

Critical electronic structures controlling phase transitions induced by lithium ion intercalation in molybdenum disulphide 被引量:1

Critical electronic structures controlling phase transitions induced by lithium ion intercalation in molybdenum disulphide
原文传递
导出
摘要 We report on first-principles studies of lithium-intercalation-induced structural phase transitions in molybdenum disulphide (MoS2 ), a promising material for energy storage in lithium ion batteries. It is demonstrated that the inversion-symmetry-related Mo-S p-d covalence interaction and the anisotropy of d-band hybridization are the critical factors influencing the structural phase transitions upon Li ion intercalation. Li ion intercalation in 2H-MoS2 leads to two competing effects, i.e. the 2H-to-1T transition due to the weakening of Mo-S p-d interaction and the D 6h crystal field, and the charge-density-wave transition due to the Peierls instability in Li-intercalated 2H phase. The stabilization of charge density wave in Li-intercalated MoS2 originates from the enhanced electron correlation due to nearest-neighbor Mo-Mo d-d covalence interaction, conforming to the extended Hubbard model. The magnitude of charge density wave is affected by Mo-S p-d covalence interaction and the anisotropy of d-band hybridization. In 1T phase of Li-intercalated MoS2 , the strong anisotropy of d-band hybridization contributes to the strong Fermi surface nesting while the d-band nonbonding with S-p facilities effective electron injection. We report on first-principles studies of lithium-intercalation-induced structural phase transitions in molybdenum disulphide (MoS2), a promising material for energy storage in lithium ion batteries. It is demonstrated that the inversion-symmetry-related Mo-S p-d covalence interaction and the anisotropy of d-band hybridization are the critical factors influencing the structural phase transitions upon Li ion intercalation. Li ion intercalation in 2H-MoS2 leads to two competing effects, i.e. the 2H-to-lT transition due to the weakening of Mo-S p-d interaction and the D6h crystal field, and the charge-density-wave transition due to the Peierls instability in Li-intercalated 2H phase. The stabilization of charge density wave in Li-intercalated MoS2 originates from the en- hanced electron correlation due to nearest-neighbor Mo-Mo d-d covalence interaction, conforming to the extended Hubbard mod- el. The magnitude of charge density wave is affected by Mo-S p-d covalence interaction and the anisotropy of d-band hybridiza- tion. In 1T phase of Li-intercalated MoS2, the strong anisotropy of d-band hybridization contributes to the strong Fermi surface nesting while the d-band nonbonding with S-p facilities effective electron injection.
出处 《Chinese Science Bulletin》 SCIE EI CAS 2013年第14期1632-1641,共10页
基金 supported by the Ningbo Key Innovation Team and the Ningbo Natural Science Foundation (2011B82005, 2012A610098) the Natural Science Foundation of Zhejiang Province (LQ12A04004) the National Natural Science Foundation of China (11174301) the National Basic Research Program of China (2012CB722700, SS2013AA050901) X.Chen appreciates supports by the Postdoctoral Foundation of China(2012M510156)
关键词 锂离子电池 二硫化钼 结构相变 电子控制 HUBBARD模型 电荷密度波 诱导 各向异性 MoS2, phase transition, charge density wave, p-d interaction, first-principles
  • 相关文献

参考文献2

二级参考文献4

共引文献2

同被引文献43

  • 1ZHOU X, WAN L J, GUO Y C. Synthesis of MoS2 nanosheet graphene nanosheet hybrid materials for stable lithium storage[J]. Chemical Communications, 2013, 49(18): 1838.
  • 2SATHISH M, TOMAI T, HONMA I. Graphene anchored with Fe3O4 nanoparticles as anode for enhanced Li-ion storage[J]. Journal of Power Sources, 2012, 217: 85-91.
  • 3CHEN S, WANG Y, AHN H, et al. Microwave hydrothermal synthesis of high performance tin-graphene nanocomposites for lithium ion batteries [J]. Journal of Power Sources, 2012, 216: 22-27.
  • 4PARK S K, YU S H, WOO S, et al. A facile and green strategy for the synthesis of MoS2 nanospheres with excellent Li-ion storage properties [J]. Cryst Eng Comm, 2012, 14(24): 8323.
  • 5WINTER M, BRODD R J. What are batteries, fuel cells, and supercapacitors [J]. Chem Rev 2004, 104: 4245- 4269.
  • 6CHANG K, CHEN W. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries [J]. Chemical Communications, 2011, 47(14): 4252.
  • 7BRIVIO J, ALEXANDER D T L, KIS A. Ripples and layers in ultrathin MoS2 embranes [J]. Nano Letters, 2011, 11(12): 5148-5153.
  • 8TENNE R, MARGULIS L, GENUT M, et al. Polyhedral and cylindrical structures of tungsten disulphide [J]. Letters to Nature, 1992, 360: 4-6.
  • 9RAMAKRISHNAMATTE H S S, GOMATHI A, MANNA A K, et al. MoS2 and WS2 Analogues of graphene [J]. Angewandte Chemie, 2010, 122(24): 4153-4156.
  • 10WHITTINGHAM M S, GAMBLE JR F R. The lithium intercalates of the transition metal dichalcogenides [J]. Materials Research Bulletin, 1975, 10(5): 363-371.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部