期刊文献+

结石患者和健康对照者尿微晶生长、聚集过程的比较研究 被引量:5

Comparative Study of Growth and Aggregation Process of Urinary Crystallites in Urines of Stone Patients and Healthy Controls
下载PDF
导出
摘要 采用扫描电子显微镜(SEM)和X-射线粉末衍射仪(XRD)比较研究了5例泌尿系结石患者和5名健康对照者的尿微晶的生长动力学差异。随着生长时间(t)增加,结石患者尿微晶尺寸不断增大,粒径从t=1 h时的约(6±4)μm增加到t=48 h的(29±17)μm,但微晶数密度从(1 400±300)mm-2逐渐减少至(450±140)mm-2,表明在患者尿液中微晶的形成过程为生长控制;相比之下,在对照者尿液中,随着t从1 h增加48 h,尿微晶数密度从(850±260)mm-2减少至(610±210)mm-2,微晶尺寸从(6±5)μm增加至(15±9)μm,这表明其生长过程同时为成核控制和生长控制。上述差异归因于对照者尿液中抑制剂的浓度和活性均比结石患者的高,更能抑制尿微晶的生长和聚集。 The differences in growth kinetics of urinary crystallites from 5 patients with renal stones and 5 healthy subjects were compared by using scanning electron microscopy (SEM) and X-ray diffractometer (XRD). With the increase of crystal growth time (t), the size of urinary crystallites from patients with renal stones increased constantly from (6±4) um at t=l h to (29±17) Ixm at t=48 h, but the density of crystallites decreased gradually from (1 400±300) mm-2 at t=l h to (450±140) mm-2 at t=48 h. It indicated that the formation process of crystallites in lithogenic urine was dominated by growth control. In contrast, for healthy subjects, the density of urinary crystallites dereased from (850+260) mm-2 at t=l h to (610+210) mm-2 at t=48 h, and the crystal size was increased only from 6±5 ixm at t=l h to (15±9) Ixm at t=48 h. It indicated that the growth process of crystallites in healthy urine was growth control and nucleation-control simultaneously. The differences mentioned above are mainly attributed to that both the concentration and activity of the inhibitors in healthy urine were higher than those in lithogenic urine, and thus can inhibit the growth and aggregation of urinary crystallites more effectively.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2013年第5期903-909,共7页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金(NO.81170649) 湖南省自然科学基金(No.S2012J5042) 湖南省教育厅科研项目(No.12C0702)资助项目
关键词 尿微晶 动力学 SEM XRD 肾结石 urinary crystallites kinetics SEM XRD renal stones
  • 相关文献

参考文献31

  • 1Yu S L, Gan X G, Huang J M, et al. J. Urol., 2011,186(3): 1114-1120.
  • 2Yao X Q, Ouyang J M, Peng H, et al. Carbohydr. Polym., 2012,90(7):392-398.
  • 3Chaiyarit S, Thongboonkerd V. J. Proteome Res., 2012,11(6): 3269-3280.
  • 4Zhang S, Su Z X, Yao X Q, et al. Mater. Sci. Eng. C-Mater. Biol. Appl., 2012,32:840-847.
  • 5LIJun-Jun(李君君),HOUShan-Hua(侯善华),XIAZhi-Yue(夏志月),etal.ChineseZInorg.Chem.(wuji Huaxue Xueboo),2012,28(2):245-250.
  • 6Daudon M, Hennequin C, Boujelben G, et al. Kidney Int., 2005,67:1934-1943.
  • 7Peng H, Ouyang J M, Yao X Q, et al. Int. J. Nanomed., 2012,7(8):4727-4737.
  • 8Daudon M, Jungers P. Nephron. Physiol., 2004,98:31-36.
  • 9Robertson W G, Peacock M, Marshall R W, et al. New England J. Med., 1976,294(5):249-252.
  • 10Poon N W, Gohel M D I. Carbohydr. Res., 2012,347:64-68.

同被引文献97

  • 1李泉,曾广赋,席时权.纳米粒子[J].化学通报,1995(6):29-34. 被引量:143
  • 2袁欢欣,欧阳健明.酒石酸及其盐抑制泌尿系结石的化学基础[J].化学进展,2006,18(5):573-578. 被引量:3
  • 3陈岚,满瑞林,李志明.草酸钙结石形态的红外光谱分析[J].分析测试学报,2007,26(4):582-584. 被引量:9
  • 4Zhao Z, Xia Y, Xue J, et al. Cryst. Growth Des., 2013,14(2):450-458.
  • 5Prywer J, Sadowski R R, Torzewska A. Cryst. Growth Des., 2015,15:1446-1451.
  • 6Hussein N S, Sadiq S M, Kamaliah M D, et al. Saudi J. Kidney Diseases Transplantation, 2013,24(3):630.
  • 7Farmanesh S, Ramamoorthy S, Chung J, et al. J. Am. Chem. Soc., 2014,136(1):367-376.
  • 8Hess B, Kok D J. Kidney Stones:Mesical and Surgical Management. Philadelphia:Lippincott-Raven Publishers, 1996:3-32.
  • 9SikiriM, Filipovi-Vincekovi N, Babi-Ivani V, et al. J. Colloid Interface Sci., 1999,212(2):384-389.
  • 10Saso L, Grippa E, Gatto M T, et al. Int. J. Urol., 2001,8(3):124-127.

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部