期刊文献+

基于MEMLS模型的积雪深度反演方法 被引量:3

Snow-depth retrieval algorithms on MEMLS
原文传递
导出
摘要 利用被动微波遥感反演积雪深度一直是积雪遥感领域中的研究热点。在现有的积雪深度反演算法中,NASA算法因其简洁、易于扩展的特点,成为应用最为广泛的算法。但NASA算法存在着一定不足:首先,由于NASA算法基于线性拟合得出,在应用到其他研究区域时需要对反演公式进行重新拟合,适用范围受到一定限制;其次,由于算法中引入的19GHz与37GHz的亮温差在雪深达到一定范围时会达到饱和,因此算法会低估积雪深度。本文针对现有反演算法的不足之处,结合蚁群智能算法的特点,发展了基于蚁群算法的积雪深度反演算法;此外,针对NASA算法中存在的雪深低估问题,引入了AMSR-E10.7GHz亮温数据,对算法进行了改进。利用MEMLS模型的模拟数据与AMSR-E辐射亮温数据对算法进行实验,并采用实测数据与AMSR-E雪水当量产品对算法的反演精度进行评价。结果表明,两种积雪深度反演算法均是可行的,反演精度与现有产品相比有较为明显的改进。 Snow-depth retrieval from passive microwave remote-sensing data has always been an active research area, though there are still several problems that need to be solved. Due to its concision and expansibility, the National Aeronautics and Space Administration (NASA) algorithm has become the most widely used among the existing snow-depth retrieval algorithms. However, this algorithm still has its limitations: first, since it is based on linear fitting, the NASA algorithm needs to be re-fitted when we need to accurately measure snow depth greater than 1 m. Second, because the difference between the 19 GHz and 37 GHz bright- ness temperature measurements is completely saturated at different snow-depth ranges, the NASA algorithm will underestimate snow depth. In order to make improvements to these existing algorithms, the research in this article has attempted to develop a new algorithm of snow-depth retrieval based on the Ant Colony Optimization. Moreover, with respect to the underestimation of snow depth of the NASA algorithm, this article introduces 10.7 GFIz brightness temperature measurements taken by AMSR-E. Simula- tions from the Microwave Emission Model of Layered Snowpacks (MEMLS) and the brightness temperature measurements of AMSR-E are applied to the snow-depth retrieval experiment. The retrieval accuracy of the algorithm is evaluated using the fieldmeasured data and the AMSR-E Snow Water Equivalent (SWE) product. Our results indicate that both of the algorithms produce accurate results, and the inversion results have improved to a certain extent compared to the AMSR-E product.
出处 《遥感学报》 EI CSCD 北大核心 2013年第3期657-670,共14页 NATIONAL REMOTE SENSING BULLETIN
基金 国家重点基础研究发展计划(973计划)(编号:2010CB951403)~~
关键词 积雪深度 被动微波遥感 蚁群算法 NASA算法 AMSR—E snow depth, positive microwave remote sensing, ant colony optimization, NASA algorithm, AMSR-E
  • 相关文献

参考文献3

二级参考文献85

  • 1曹梅盛,李培基,D.A.Robinson,T.E.Spies,G.Kukla.中国西部积雪SMMR微波遥感的评价与初步应用[J].环境遥感,1993,8(4):260-269. 被引量:46
  • 2Sturm M, Holmgren J. Differences in Compaction Behavior of three Climate Classes of Snow[J]. Annals of Glaciology, 1998,26 : 125-130.
  • 3Kelly R E,Chang A T,Leung T,et al. A Prototype AMSR-E Global Snow Area and Snow Depth Algorithm [J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 44 (2) :230-242.
  • 4Foster J L, Chang A T C, Hall D K, et al. Comparison of Snow Mass Estimate from Prototype Passive Microwave Snow Algorithm,a Revised Algorithm and a Snow Depth Climatology[J]. Remote Sensing of Environment, 1997,62 (2):132-142.
  • 5Chang A T C, Foster J L, Hall D K. Snow Parameters Derived from Microwave Measurements During the BOREAS Winter Field Campaign[J]. Journal of Geophysical Research, 1997, 102(D24):29663-29671.
  • 6Hall D K. Influence of Depth Hoar on Microwave Emission from Snow in Northern Alaska[J]. Cold Regions Science and Technology, 1987,13 : 225-231.
  • 7Tait A B. Estimation of Snow Water Equivalent Using Passive Microwave Radiation Data[J]. Remote Sensing of Environment, 1998,64 : 286-291.
  • 8Hall D K,Sturm M,Benson C S,etal. Passive Microwave Remote and in Situ Measurements of Arctic and Subarctic Snow Cover in Alaska[J]. Remote Sensing of Environment, 1991, 38:161-172.
  • 9Foster J L, Hall D K, Chang A T C, et al. Effects of Snow Crystal Shape on the Scattering of Passive Microwave Radiation[J]. IEEE Transactions on Geoscience and Remote Sensing,1999,37(2):1165-1168.
  • 10Foster J L,Barton J S,Chang A T C,et al. Snow Crystal Orientation Effects on the Scattering of Passive Microwave Radiation[J]. IEEE Transactions on Geoscience and Remote Sensing,2000,38(5) :2430-2434.

共引文献38

同被引文献37

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部