3Sarwar B, Karypis G, Konstan J, el al. Analysis of recommendation algorithms for e-commeree//Proceedings of the 2nd ACM Conference on Eleetronie commerce. New York: ACM Press, 2000: 158 - 167.
4Sarwar B, Karypis G, Konstan J, el al. hem-based collaborative filtering recommendation algorithms//Proceedings of the 10th International Conference on World Wide Web. New York: ACM Press, 2001 : 285 -295.
5Kim C, Kim J. A recommendation algorithm using multi-level association ndes//Proceedings of lnternalional Conference on Web Intelligence ( W103 ). Washington D. C. : IEEE Computer Society, 2003 : 524 - 527.
6Aggafwal C C, WolfJ L, Wu K L, et al. Horting hatches an egg: A new graph-theoretic approach to collaborative filtering//Proceedings of 5th ACM SIGKDD International Conference on Knowledge Discov- ery and Data Mining. New York: ACM Press, 1999:201 -212.
7Hartigan J A. Direct clustering of a data matrix. Journal of the Ameriican Statistical Association, 1972, 67 ( 337 ) : 123 - 129.
8Cheng Y, Church G M. Biclustering of expression data. Proe lnt Conf Intell Syst Mol Bioi, 2000, 8( 1 ) : 93 - 103.
9Yang Jiong, Wang Wei, Wang Haixun, et ah o-elusters: Capturing subspace correlation in a large dataset//Proceedings of the18th International Conference on Data Engineering. San Jose: IEEE Computer Society Press, 2002 : 517 - 528.
10Yang Jiong, Wang Wei, Wang Haixun, et al. Enhanced bicluslering on expression data//Proceedings of the Third IEEE Symposium on Bioinformatics and Bioengineering. Washing/on D. C. : IEEE Computer Sociery Press, 2003:321 -327.