摘要
In this paper, the convergence analysis of the Volterra integral equation of second kind with weakly singular kernel and pantograph delays is provided. We use some function transformations and variable transformations to change the equation into a new Volterra integral equation with pantograph delays defined on the interval [-1, 1], so that the Jacobi orthogonal polynomial theory can be applied conveniently. We provide a rigorous error analysis for the proposed method in the L∞-norm and the weighted L2-norm. Numerical examples are presented to complement the theoretical convergence results.
In this paper, the convergence analysis of the Volterra integral equation of second kind with weakly singular kernel and pantograph delays is provided. We use some function transformations and variable transformations to change the equation into a new Volterra integral equation with pantograph delays defined on the interval [-1, 1], so that the Jacobi orthogonal polynomial theory can be applied conveniently. We provide a rigorous error analysis for the proposed method in the L∞-norm and the weighted L2-norm. Numerical examples are presented to complement the theoretical convergence results.
基金
Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant Nos. 11271157, 11071102, 11001259), the Croucher Foundation of Hong Kong, the National Center for Mathematics and Interdisciplinary Science, CAS, and the President Foundation of AMSS-CAS.