期刊文献+

转子故障特征数据分类的KPCA-BFDA方法 被引量:6

KPCA-BFDA for the Classification of Rotor Fault Feature Data
下载PDF
导出
摘要 对非线性转子系统故障特征数据的分类方法进行了研究。在提出一种偏费歇判别分析法(biased fisher discriminatory analysis,简称BFDA)的前提下,进一步提出将核主成分分析法(kernel principal component analysis,简称KPCA)与偏费歇判别分析法相结合的数据集降维方法,该方法中的核主成分分析步骤用于构造剔除数据集冗余信息的降维数据集,偏费歇判别分析步骤用于进一步降低数据集维数并提高不同类别数据子集间的分离程度。对实例数据与典型故障数据的分类结果表明,提出的偏费歇判别分析法在具备费歇判别分析降维可分性能的基础上,具有更低计算复杂度的特点。提出的核主成分分析结合偏费歇判别分析的算法,其对应的降维结果能直接应用于线性分类器,且取得了较好的分类效果。 Aiming at the classification of fault feature data for the nonlinear rotor system,a method is studied.On the premise of introduction of Biased Fisher Discriminatory Analysis,a method of dimension reduction for data set by KPCA combined with BFDA is introduced furthermore.The procedure of KPCA which removes redundant information of original data set is used to construct data set of dimension reduction,BFDA is used to reduce dimension of data set further and improve the separation of data subset from different category.The classification results of instance data and typical fault data show that,on the basis of dimension reduction separability of FDA,the proposed method of BFDA is lower for the characteristics of computational complexity.The result of dimension reduction corresponding to the proposed method of KPCA combined with BFDA can apply to linear classification directly,and effective data classification can be achieved.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2013年第2期192-198,334-335,共7页 Journal of Vibration,Measurement & Diagnosis
基金 国家自然科学基金资助项目(50875118 51165019) 甘肃省教育厅硕导基金资助项目(0903-11)
关键词 故障特征数据集 数据分类 偏费歇判别分析 核主成分分析 feature data set,data classification,biased fisher discriminatory analysis(BFDA),kernel principal component analysis(KPCA)
  • 相关文献

参考文献11

  • 1Sch61kopf B,Smola A,Mtfller K "R. Nonlinear compo- nent analysis as a kernel eigenvalue problem[-J:. Neu- ral Computation, 1998(10) : 1299-1319.
  • 2李巍华,史铁林,杨叔子.基于非线性判别分析的故障分类方法研究[J].振动工程学报,2005,18(2):133-138. 被引量:13
  • 3Shawe T J,Cristianini N. Kernel methods for pattern analysis [M]Cambridge: Cambridge University Press, 2004 : 143-151.
  • 4胡金海,谢寿生,侯胜利,尉询楷,何卫锋.核函数主元分析及其在故障特征提取中的应用[J].振动.测试与诊断,2007,27(1):48-52. 被引量:24
  • 5张尧庭.多元统计分析引论[M].北京:科学出版社,2003.
  • 6Zhou X, Huang T S. Small sample learning duringmultimedia retrieval using biasma[C]// IEEE Com- puter Society Conference on Computer Vision and Pat- tern Recognition. Kauai, Hawaii,USA :[s. n. ],2001.
  • 7魏秀业,潘宏侠,王福杰.基于粒子群优化的核主元分析特征的提取技术[J].振动.测试与诊断,2009,29(2):162-166. 被引量:14
  • 8Bozdogan H,Camillo F,Liberati C. On the choice of the kernel function in kernel discriminant analysis us- ing information eomplexity[J]. Data Analysis,Classi- fication and the Forward Search, 2006,34 : 11-21.
  • 9Xu Yong, Liu Chuancai, Zhang Chongyang. Deter- mine the kernel parameter of KFDA using a minimum search algorithm[J]. Lecture Notes in Computer Sei- enee, 2007 (4682) : 418-426.
  • 10霍天龙,赵荣珍,胡宝权.基于熵带法与PSO优化的SVM转子故障诊断[J].振动.测试与诊断,2011,31(3):279-284. 被引量:36

二级参考文献50

共引文献176

同被引文献63

  • 1陈宗华,秦云龙,梁晓刚,张亚丁,贾鹏林,许适群,周培荣.石化行业大型离心式压缩机组安全运行研究[J].化工装备技术,2005,26(2):57-64. 被引量:18
  • 2李巍华,史铁林,杨叔子.基于非线性判别分析的故障分类方法研究[J].振动工程学报,2005,18(2):133-138. 被引量:13
  • 3周韶园,王树青,张建明.PCA-CHMM在化工过程故障诊断中的应用[J].浙江大学学报(工学版),2005,39(10):1475-1480. 被引量:8
  • 4张尧庭.多元统计分析引论[M].北京:科学出版社,2003.
  • 5Masashi S. Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis[-J~. Machine Learning Research, 2007, 8(5).. 1027-1061.
  • 6Jiang Li, Shi Tielin, Xuan Jianping. An intelligent fault diagnosis method of rolling bearings based on regularized kernel Marginal Fisher analysis [J ]. Journal of Physics Conference Series, 2012, 364 (1) : 597-604.
  • 7Swets D L, Weng J. Using discriminant eigenfea- tures for image retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 18 (8): 831-836.
  • 8HeXF, YanSC,Hu Y X, et al. Face recognition using Laplacianfaces[J]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2005, 27 (3) : 328-340.
  • 9Thompson W E. Fluid dynamic excitation of centrifugal compressor rotor vibrations [ J ]. Journal of Fluids Engineering, 2010,100( 1 ): 73-78.
  • 10Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for non-linear and non stationary time series analysis [ J ]. Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 1998, 454 : 903 - 995.

引证文献6

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部