摘要
对非线性转子系统故障特征数据的分类方法进行了研究。在提出一种偏费歇判别分析法(biased fisher discriminatory analysis,简称BFDA)的前提下,进一步提出将核主成分分析法(kernel principal component analysis,简称KPCA)与偏费歇判别分析法相结合的数据集降维方法,该方法中的核主成分分析步骤用于构造剔除数据集冗余信息的降维数据集,偏费歇判别分析步骤用于进一步降低数据集维数并提高不同类别数据子集间的分离程度。对实例数据与典型故障数据的分类结果表明,提出的偏费歇判别分析法在具备费歇判别分析降维可分性能的基础上,具有更低计算复杂度的特点。提出的核主成分分析结合偏费歇判别分析的算法,其对应的降维结果能直接应用于线性分类器,且取得了较好的分类效果。
Aiming at the classification of fault feature data for the nonlinear rotor system,a method is studied.On the premise of introduction of Biased Fisher Discriminatory Analysis,a method of dimension reduction for data set by KPCA combined with BFDA is introduced furthermore.The procedure of KPCA which removes redundant information of original data set is used to construct data set of dimension reduction,BFDA is used to reduce dimension of data set further and improve the separation of data subset from different category.The classification results of instance data and typical fault data show that,on the basis of dimension reduction separability of FDA,the proposed method of BFDA is lower for the characteristics of computational complexity.The result of dimension reduction corresponding to the proposed method of KPCA combined with BFDA can apply to linear classification directly,and effective data classification can be achieved.
出处
《振动.测试与诊断》
EI
CSCD
北大核心
2013年第2期192-198,334-335,共7页
Journal of Vibration,Measurement & Diagnosis
基金
国家自然科学基金资助项目(50875118
51165019)
甘肃省教育厅硕导基金资助项目(0903-11)
关键词
故障特征数据集
数据分类
偏费歇判别分析
核主成分分析
feature data set,data classification,biased fisher discriminatory analysis(BFDA),kernel principal component analysis(KPCA)