期刊文献+

较小样本动态声发射信号多元统计分析技术 被引量:5

Analysis of Dynamic Acoustic Emission Signals Using Multivariate Statistical Technique for Smaller Dataset
下载PDF
导出
摘要 利用多传感信息集成系统,以两组平均年龄对应的受试对象往复运动过程中获取的动态声发射信号和角度信号为对象,研究了适用于较小样本的动态声发射信号多元统计分析技术。通过同步记录的角度信号,将往复运动分解为若干个独立运动周期和运动过程;利用累计概率分布,选取具备较显著差异的特征;结合多元统计技术,减小数据量,建立动态声发射信号的可视化模型,证实了使用较小样本声发射信号实现膝盖骨关节诊断的可行性。 A potential multivariate statistical based acoustic signal analysis and processing technique is presented for dynamic knee assessment for the smaller dataset.By using the integrated data acquisition system developed by the authors from two age-matched elder groups,the dynamic acoustic and the corresponding joint angle signals emitted from the consecutive knee movements are acquired.Consecutive movement cycles are isolated into individual for further analysis,and the cumulative probability distribution is employed for feature selection.Multivariate statistic methodologies are employed to derive the acoustic emission based joint profiles and to create the visual effect among the healthy and osteoarthritic groups,as well as to create the cluster evidence to demonstrate the feasibility of diagnosing knee osteoarthritis using the dynamic acoustics emission.The research findings show not only the potentials for simplifying the data acquisition protocol,but also the discovery of movement significancy.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2013年第2期199-203,335,共5页 Journal of Vibration,Measurement & Diagnosis
基金 英国Arthritis Research Campaign支持计划资助项目(17542) 国家重点基础研究发展计划("九七三"计划)资助项目(2010CB736005)
关键词 较小样本 动态 声发射 多元统计 骨关节炎 smaller dataset,dynamic,acoustic emission,multivariate statistics,osteoarthritis
  • 相关文献

参考文献14

  • 1Gray H. Anatomy of the human body [M]. 20 th ed. New York : Bartleby. corn, 2000 : 1-32.
  • 2Peat G, McCarmey R, Croft P. Knee pain and os- teoarthritis in older adults: a review of community burden and current use of primary health care[J]. Annal of Rheumatology Disease, 2001, 60: 91-97.
  • 3Felson D T, Lawrence R C, Dieppe P A, et al. Os- teoarthritis the disease and its prevalence and impact.[J]. Annal of International Medicine, 2000,133: 637- 639.
  • 4Masearo B, Prior J A, Shark L K, et al. Exploratory study of a non-invasive method based on acoustic e- mission for assessing the dynamic integrity of knee joints [J]. Medical Engineering and Physics, 2009, 31: 1013-1022.
  • 5Prior J A, Mascaro B, Shark L K, et al. Analysis of high frequency acoustic emission signals as a new ap- proach for assessing knee osteoarthritis[J]. Annal of Rheumatology Disease, 2010,69 : 929-930.
  • 6Mu Tingting, Nandi A K, Rangayyan R M. Screen- ing of knee-joint vibroarthrographic signals using the strict 2-surface proximal classifier and genetic algo- rithm [J]. Computers in Biology and Medicine, 2008,38: 1103-1111.
  • 7Shark L K, Chen Hongzhi, Goodacre J. Discovering differences in acoustic emission between healthy and osteoarthritic knees using a four-phase model of sit- stand-sit movements [J]. The Open Medical Infor- matic Journal, 2010,4: 116-124.
  • 8Shark L K, Chen Hongzhi, Goodacre J. Knee acous- tic emission: a potential biomarker for quantitative as- sessment of knee joint ageing and degeneration [J]. Medical Engineering and Physics, 2011,33 : 534-545.
  • 9Chen Hongzhi. Discovery of acoustic emission based biomarker for quantitative assessment of knee joint ageing and degeneration [D]. Preston: University of Central Lancashire, 2011.
  • 10Kerr K M, White J A, Barr D A, et al. Analysis of the sit-stand-sit movement cycle in normal subjects [J]. Clinical Biomechanics, 1997,12:236-245.

二级参考文献21

共引文献25

同被引文献28

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部