期刊文献+

基于SOFM的人脸图像聚类方法比较 被引量:1

Comparison of face cluster methods based on SOFM
下载PDF
导出
摘要 通过实验探讨了几种人脸图像聚类方法的效果,并给出了一些定性的结论。首先是试图找出数据量的大小对聚类效果的影响,实验结果表明,聚类数据量的增加可以使聚类结果更好,并且使用PCA方法提取人脸特征时,人脸轮廓信息越多,聚类结果越好;其次是将人脸图像按五官分割成不同的部分,然后分别使用PCA和ICA方法提取特征进行聚类,实验结果表明使用ICA方法比使用PCA方法提取的特征的聚类效果好。 This paper discusses on the effects of several face cluster methods through the experiments, and draws some qualitative conclusions. Firstly, the effect of image amount on the cluster is considered. The experimental results show that the increase of image amount can make a better clustering, and if facial features are extracted with PCA method, the more contour information, the better. Secondly, the segmentation of a face according to its components is considered and the features are extracted separately with PCA and ICA methods. The experimental results show that the clustering result of using ICA is better than the one using PCA.
出处 《信息技术》 2013年第4期162-165,共4页 Information Technology
关键词 人脸聚类 SOFM PCA ICA facial clustering SOFM PCA ICA
  • 相关文献

参考文献3

  • 1Samal A, Iyengar P A. Automatic recognition and analysis of human faces and facial expressions : a survey [ J ]. Pattern Recognition, 1992 (25) :65 -77.
  • 2范群贞,刘金清.基于PCA/ICA的人脸特征提取新方法[J].电子测量技术,2010,33(8):31-34. 被引量:20
  • 3段锦.人脸自动机器识别[M].北京:科学出版社,2009:88-103.

二级参考文献10

  • 1尹克重,龚卫国,李伟红,梁毅雄.基于小波变换和ICA的人脸识别方法[J].仪器仪表学报,2005,26(z2):412-415. 被引量:10
  • 2余晓梅,徐丹.基于外观的子空间人脸识别方法研究[J].计算机应用研究,2007,24(5):10-12. 被引量:5
  • 3SAMAL A, IYENGAR P A. Automatic recognition and analysis of human faces and facial expressions:a survey[J]. Pattern Recognition, 1992(25) : 65-77.
  • 4JOLLIFFE I T. Principal Component Analysis [M]. New York : Springer, 1986.
  • 5BELHUMEUR P N, HESPANHA J P, KRIENGMAN DJ. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection[J]. IEEE Transaction on Pattern Analysis and MachineIntelligence, 1997,19 (7) :771-720.
  • 6BARTLETT M S,MOVELLAN J R,SEJNOWSKI T J. Face recognition by independent component analysis[J]. IEEE Transactionson Neural Networks, 2002,13(6): 1450-1464.
  • 7PENTLAND T M. A eigenfaces for recognition[J]. Jour-nal of Cognitive Neuroscience, 1991,3 (1) : 71-86.
  • 8COMON P, MOURRAIN B. Decomposition of quantiesin sums of powers of linear forms[J]. Signal Processing, Elsevier, 1996,53(2) : 93-107.
  • 9李刚,高政.人脸识别理论研究进展[J].计算机与现代化,2003(3):1-6. 被引量:20
  • 10刘青山,卢汉清,马颂德.综述人脸识别中的子空间方法[J].自动化学报,2003,29(6):900-911. 被引量:117

共引文献29

同被引文献6

  • 1Dervis Karaboga,Bahriye Akay.A modified Artificial Bee Colony (ABC) algorithm for constrained optimization problems[J]. Applied Soft Computing Journal . 2010 (3)
  • 2A Bronstein,M Bronstein,R Kimmel.Expression-Invariant 3D Face Recognition. Proceedings of audio and video-based biometric person authentication . 2003
  • 3M.KAZHDAN,T.Funkhouser,S.Rusinkiewicz.Rotation invariant spherical harmonic representation of3d sh ape descriptors. SGP’’03:Eurographics/ACM SIGGRAPH symposium on Geometry processing . 2003
  • 4Lyons M J.The Japanese Female Facial Expression (JAFFE) Database [DB]. http://www.mis.atr.co.jp/~mlyons/jaffe.html . 1998
  • 5闫奕名,张晔,高凤娇.基于多面化分解模型的目标信息获取优化技术[J].华南理工大学学报(自然科学版),2012,40(3):100-105. 被引量:2
  • 6任成娟.基于改进的子模式局部保持映射人脸识别方法[J].信息技术,2013,37(9):42-45. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部