期刊文献+

一类不可约L-矩阵的预条件AOR迭代法 被引量:1

A New Preconditioned AOR Iterative Method for Irreducible L-matrices
下载PDF
导出
摘要 对于系数矩阵为不可约的L-矩阵的大型线性方程组,本文给出了一类新的预条件AOR迭代法,并证明其在给定的条件下是收敛的,数值例子证明解的有效性. In this paper,we present a new preconditioned AOR-type iterative method for solving the linear system, where coefficient matrix is an irreducible L-matrix. And give some theorems and corollaries to show that the new pre-conditioned AOR iterative method is convergence under the given condition.Numerical example verifies validity.
出处 《内蒙古民族大学学报(自然科学版)》 2013年第2期135-138,共4页 Journal of Inner Mongolia Minzu University:Natural Sciences
基金 内蒙古自然科学基金资助项目(2010MS0114)
关键词 AOR迭代法 L-矩阵 收敛性 谱半径 AOR iterative method L-Matrices Convergence Spectral radius
  • 相关文献

参考文献7

二级参考文献20

  • 1Gunawardena A D, Jain S K, Snyder L.Modified iterative methods for consistent linear systems[J], linear Algebra Appl, 1991,156:123-143.
  • 2Hisahhi K, Kyouji Harada, Mumenori Moeimoto, et al.A comparison theorem for the iterative method with the preconditioner (I + Smax) [J]. Computational and Applied Mathematics, 2002,145:373-378.
  • 3Zheng B, Miao S X. Two new modified Gauss-Seidel methods for linear system with M-matrices[M]. Computational and Applied Mathematics, 2009.
  • 4Adjidimos A, Noutsos H D , Tzoumas M. More on modifications and improvement of classical iterative schemes for M-matrices[J]. Computational and Applied Mathematics, 2003, 364:253-279.
  • 5Kohono T, Kotakemore H, Niki H,et al, Improwing the Gauss-Seidel method for Z-matrices[J]. Linear Algebra Appl, 2000,317:227-224.
  • 6Niki H, Kohno T, Morimoto M. The preconditioned Gauss-Seidel method faster than the SOR methods, Comput.Appl.Math. 2008, 219: 59-71.
  • 7Milaszewica J P. Improving Jacobi and Gauss-seidel iterations[J]. Linear Algebra Appl, 1987,93:160-170.
  • 8Varga R S. Matrix Rerative Analysis[M].Prentice-Hall, NJ,Englewood Cliffs, 1962.
  • 9Niki H, Harada K, Morimoto M, et al,The survey of preconditioners used for accelerating the rate of convergence in the Gauss-seidel method[J]. Computational and Applied Mathematics, 2004,164: 587-600.
  • 10Wen Li. A note on the preconditioned Gauss-seidel (GS) method for linear systems[J]. Computational and Applied Mathematics, 2005,182:81-90.

共引文献3

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部