期刊文献+

Adaptive sampling immune algorithm solving joint chance-constrained programming 被引量:4

Adaptive sampling immune algorithm solving joint chance-constrained programming
原文传递
导出
摘要 This work investigates one immune optimization algorithm in uncertain environments, solving linear or nonlinear joint chance-constrained programming with a general distribution of the random vector. In this algorithm, an a priori lower bound estimate is developed to deal with one joint chance constraint, while the scheme of adaptive sampling is designed to make empirically better antibodies in the current population acquire larger sample sizes in terms of our sample-allocation rule. Relying upon several simplified immune metaphors in the immune system, we design two immune operators of dynamic proliferation and adaptive mutation. The first picks up those diverse antibodies to achieve proliferation according to a dynamical suppression radius index, which can ensure empirically potential antibodies more clones, and reduce noisy influence to the optimized quality, and the second is a module of genetic diversity, which exploits those valuable regions and finds those diverse and excellent antibodies. Theoretically, the proposed approach is demonstrated to be convergent. Experimentally, the statistical results show that the approach can obtain satisfactory performances including the optimized quality, noisy suppression and efficiency. This work investigates one immune optimization algorithm in uncertain environments, solving linear or nonlinear joint chance-constrained programming with a general distribution of the random vector. In this algorithm, an a priori lower bound estimate is developed to deal with one joint chance constraint, while the scheme of adaptive sampling is designed to make empirically better antibodies in the current population acquire larger sample sizes in terms of our sample-allocation rule. Relying upon several simplified immune metaphors in the immune system, we design two immune operators of dynamic proliferation and adaptive mutation. The first picks up those diverse antibodies to achieve proliferation according to a dynamical suppression radius index, which can ensure empirically potential antibodies more clones, and reduce noisy influence to the optimized quality, and the second is a module of genetic diversity, which exploits those valuable regions and finds those diverse and excellent antibodies. Theoretically, the proposed approach is demonstrated to be convergent. Experimentally, the statistical results show that the approach can obtain satisfactory performances including the optimized quality, noisy suppression and efficiency.
出处 《控制理论与应用(英文版)》 EI CSCD 2013年第2期237-246,共10页
基金 supported by the National Natural Science Foundation of China(No.61065010) the Doctoral Fund of Ministry of Education of China(No.20125201110003)
关键词 Joint chance-constrained programming Immune optimization Adaptive sampling Reliability domi-nance Noisy attenuation Joint chance-constrained programming Immune optimization Adaptive sampling Reliability domi-nance Noisy attenuation
  • 相关文献

参考文献1

二级参考文献6

共引文献14

同被引文献31

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部