期刊文献+

非平稳地震下巨子型有控结构非线性随机振动研究 被引量:1

Nonlinear random vibration analysis of mega-sub controlled structure subjected to non-stationary seismic excitation
下载PDF
导出
摘要 以Priestley演变谱理论对非平稳振动的描述为基础,同时参考了虚拟激励法计算随机振动响应的思路,利用等效线性化方法推导出滞迟系统在强度-频率双非平稳激励下的非线性响应求解公式。运用推导出来的公式计算了巨子型有控结构(MSCSS)在特定震级、震源距双非平稳地震随机激励下的非线性响应,结果表明一般情况下,子结构的非线性程度越高,MSCSS的响应越小,同时表明具有振动控制能力的MSCSS可以较传统的巨型框架结构拥有更好的抗震能力。研究了MSCSS构造参数的设置,如巨子结构质量比、巨子结构相对刚度比在不同非线性程度下对结构减震性能的影响规律,在实际应用中可以根据计算结果合理分配这些参数,以达到最佳减震效果。 According to the Priestley's evolutionary spectrum theory and pseudo excitation method, and based on equivalent lin- earization method the formula are derived for calculating nonlinear responses of hysteretic system subjected to non-stationary excitations with amplitude and frequency variations. The nonlinear random responses of Mega-Sub Controlled Structure System (MSCSS) were calculated. Results demonstrate that in the general case the stronger the nonlinearity of the sub-structure the less the response of the MSCSS. The MSCSS is more favorable than traditional mega-frame structure in vibration control. Fur- thermore, the influences of structural parameters, such as the mass ratio and the stiffness ratio between mega-structure and sub-structure, on structural vibration reduction under different nonlinearity degree are investigated, which can be used to opti- mize the vibration control ability.
出处 《振动工程学报》 EI CSCD 北大核心 2013年第2期178-184,共7页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(51078311) 教育部博士点基金资助项目(20096102110018) 西北工业大学基础研究基金项目(JC200814)
关键词 随机振动 振动控制 非平稳 等效线性化 巨子型有控结构 random vibration vibration control non-stationary equivalent linearization mega-sub controlled structure
  • 相关文献

参考文献6

二级参考文献21

  • 1连业达,张洵安,谢霄,王朝霞.脉动风载作用下巨-子型控制结构体系中耗能阻尼器的应用[J].黑龙江大学自然科学学报,2005,22(4):544-549. 被引量:3
  • 2连业达,张洵安,毕金凤,王朝霞.地震作用下新结构体系中阻尼器研究[J].工业建筑,2006,36(2):16-19. 被引量:21
  • 3李桂清 李秋胜.工程结构时变可靠度理论及其应用[M].北京:科学出版社,2001.135-191.
  • 4Zhang X A, Wang D, Jiang J S. The controlling mechanism and the controlling effectiveness of passive mega-sub-controlled frame subjected to random wind loads[J]. Journal of Sound and Vibration, 2005 , 283 : 543-560.
  • 5Feng M Q, Mita A. Vibration control of tall buildings using mega-sub configuration[J]. Journal of Engineering Mechanics, 1995, 121:1082-1087.
  • 6Chai W Feng. Vibration control of super tall buildings subjected to wind loads [J]. International Journal of Nonlinear Mechanics, 1997, 32: 657-668.
  • 7Priestley M B. Evolutionary Spectra and Non-Stationary Processes [J]. Journal of the Royal Statistical Society, Series B Methodological, 1965, 27(2): 204-237.
  • 8Huang N E. The Empirical Mode Decomposition and Hilbert Spectrum for Nonlinear Andnon-Stationary Time Series Analysis [J]. Pro R Soc London, 1998, 454:903 -995.
  • 9Kameda H, Goto H, Sugito M, Asamara T. Prediction of Nonstationary Earthquake Motions for Given Magnitude, Distance and Specific Site Condition [C]// Proceedings of the 2nd US National Conference on Earthquake Engineering . California: Stanford University, 1979 : 243 - 252.
  • 10Lin J H, Zhang W S, WiUiams F W. Pseudo-excitation Algorithm Fornon-Stationary Random Seismic Responses [ J ]. Engineering Structures, 1994, 16 : 270 - 276.

共引文献39

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部