期刊文献+

一类时滞差分方程解的持久性

Permanence of Solution for a Class of Delay Difference Equation
下载PDF
导出
摘要 考虑变系数时滞差分方程pn+1-pn=-δnpn+βn/(1+pn-ω)证明方程的解是持久的.利用不动点定理,证明了周期正解的存在性.推广了已有文献中的相关结果,具有一定的理论意义和较强的实际应用价值. The permanence of solution of a class delay difference equation is shown:Pn+1-Pn=-δnPn+β/1+Pn-musing a fixed point theorem,show the existence of periodic positive solution of the equation. The results extends corresponding known results in literature and provides more application value.
作者 景冰清
出处 《太原师范学院学报(自然科学版)》 2013年第1期7-8,11,共3页 Journal of Taiyuan Normal University:Natural Science Edition
基金 山西大学商务学院科研基金资助项目(2012050)
关键词 时滞差分方程 持久性 不动点定理 周期正解 delay difference equation permanence fixed-point positive periodic solution
  • 相关文献

参考文献7

  • 1Mackey M C,Glass L. Oscillationand chaos in physiological control system[J]. Science, 1977,197:287-289.
  • 2Ivanov A F. On global stability in a nonlinear discrete modle[J]. Nonlinear Anal, 1994,23..1 383-1 389.
  • 3Saker S H. Qscillation and global attractivity of hematopoiesis model with delay time[J]. Appl. Math. Comput,2003,136 (2 3) : 27-36.
  • 4EI-Morshedy H A,Liz E. Convergence to equlibria in discrete population models[J]. J. Difference Equ, Appl, 2005,11 : 117 131.
  • 5Erbe L, Xia H, Yu J S. Global stability of a linear nonautonomous delay differential equation[J]. J. Difference Equ. Appl, 1995,1:151-161.
  • 6Saker S H,Agarwal S. Oscillation and global attraetivity of a periodic survival red blood cells model[J]. Dyn. Contin. Discr. lmpul. Syst. Set. A,Math. Anal,2005,12:429-440.
  • 7景冰清.一类多时滞微分方程的周期正解[J].太原师范学院学报(自然科学版),2008,7(2):19-21. 被引量:1

二级参考文献6

  • 1[2]Cheng S S,Zhang G.Existence of positive non-autonomous functional differential equations[J].Electronic JDE,2001(59):1-8
  • 2[3]Liu Bing.Positive periodic solutions for a non-autonomous delay differential equations[J].Acta Mathematical Applicatae,Sinica English Series,2003,9(2):307-316
  • 3[5]Wang Haiyan.Positive periodic solutions of functional differential equations[J"l.Differential Equations,2004(202):354-366
  • 4[6]Deimling K.Nonlinear functional analysis[M].Berlin:Springer-Verlag,1985
  • 5蒋达清,魏俊杰.非自治时滞微分方程周期正解的存在性[J].数学年刊(A辑),1999,20A(6):715-720. 被引量:47
  • 6任景莉,任保献,葛渭高.一类非线性中立型时滞微分方程周期解的存在性[J].应用数学学报,2004,27(1):89-98. 被引量:7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部