摘要
文章主要考虑如下分数阶微分方程的边值问题Dα0+u(t)+f(t,u(t))=0,u(0)=u(1)=0.这里t∈[0,1],f:[0,1]×R→R,f为连续函数,1<α≤2.我们利用Banach压缩映射定理和Brou-wer不动点定理得到此边值问题解的存在性定理.
We investigate the existence of solutions for the boundary value problem on the following fractional differential equationD0+U(t)+f(t,w(t))=0,u(0)=u(1)=0where f. [-0,1] )〈R---R is continuous, By means of the contraction mapping theorem and the Brouwer fixed point theorem,the existence and uniqueness of solution are obtained.
出处
《太原师范学院学报(自然科学版)》
2013年第1期12-13,20,共3页
Journal of Taiyuan Normal University:Natural Science Edition
关键词
分数阶微分方程
边值问题
压缩映射定理
Brouwer定理
fractional differential equation~ boundary value problem~ contraction mappingtheorem
Brouwer theorem