期刊文献+

一类分数阶微分方程边值问题解的存在性和唯一性 被引量:1

Existence and Uniqueness of Solutions for the Boundary Value Problem about Fractional Differential Equation
下载PDF
导出
摘要 文章主要考虑如下分数阶微分方程的边值问题Dα0+u(t)+f(t,u(t))=0,u(0)=u(1)=0.这里t∈[0,1],f:[0,1]×R→R,f为连续函数,1<α≤2.我们利用Banach压缩映射定理和Brou-wer不动点定理得到此边值问题解的存在性定理. We investigate the existence of solutions for the boundary value problem on the following fractional differential equationD0+U(t)+f(t,w(t))=0,u(0)=u(1)=0where f. [-0,1] )〈R---R is continuous, By means of the contraction mapping theorem and the Brouwer fixed point theorem,the existence and uniqueness of solution are obtained.
出处 《太原师范学院学报(自然科学版)》 2013年第1期12-13,20,共3页 Journal of Taiyuan Normal University:Natural Science Edition
关键词 分数阶微分方程 边值问题 压缩映射定理 Brouwer定理 fractional differential equation~ boundary value problem~ contraction mappingtheorem Brouwer theorem
  • 相关文献

参考文献5

  • 1Delbosco D,Rodino L. Existence and uniqueness for a nonlinear fractional differential equations[J]. Math. Appl. ,1996,204 609-625.
  • 2Lashmikantham V,Vatsala A S. Basic theory of fractional differential equations,nonlinear anal[J].TMA,2008,69(8) :2 677 -2 682.
  • 3Jiang D,Yuan C. The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear frac- tional differential equations and its application[J]. Nonlinear Analysis,2010,72:710-719.
  • 4Wang Y,Liu L,Wu Y. Positive solutions for a nonlocal fractional differential equations, nonlinear anal[J]. TMA, 2011,74:3 599-3 682.
  • 5Liang S, Zhang J. Positive solutions for boundary value problems of nonlinear fractional differential equation[J]. Nonlinear A- nal. ,2009,71:5 545-5 550.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部