期刊文献+

准噶尔盆地人工林地土壤全盐的高光谱反演 被引量:9

Total Soil Salinity in Artificial Forest in the Junggar Basin Based on Hyperspectrum
原文传递
导出
摘要 随着高光谱遥感技术的快速发展,通过其定量估测土壤化学成分具有很好的可行性。使用ASD Pro Field-Spec3便携式光谱仪,测量准噶尔盆地人工林地风干土壤样品的可见光-近红外光谱,利用土壤反射光谱值预测全盐的含量。首先,通过皮尔森相关系数分析方法,计算土壤全盐与土壤反射光谱之间的相关性,其中土壤光谱值的二阶导数与土壤全盐的相关系数最高为0.806,均方根误差最小为1.508。其次,在基于光谱反射率的基础上,通过多元统计回归分析,表明土壤光谱在1 130 nm、1 430 nm和1 930 nm波段的全盐反演模型预测的效果较好,可以利用这3个波段建立回归方程,对土壤全盐进行反演估算。 With the rapid development of hyperspectral remote sensing, it is feasible to quantitatively investigate the important chemical components in soil. In this study, the values of NIR-Visible spectral reflectance of soil sam- ples collected from the Junggar Basin in Xinjiang, China were measured with an ASD Pro FieldSpec3 hyperspectral meter so as to predict the total soil salinity based on the spectral reflectance of soil, and provide a theoretical basis for monitoring soil salinization. The Pearson correlation coefficient analysis was used to estimate the correlation be- tween total salinity and spectral reflectance of soil. The results showed that there was a good correlation between soil spectral reflectance and total soil salinity. The highest correlation coefficient between second derivative of soil spec- tral reflectance and total soil salinity was 0. 806, and the minimum root-mean-square error was 1. 508. Through the multiple statistics regression analysis based on spectral reflectance, the performance of inversion model of total soil salinity at wavelengths of 1 130 nm, 1 430 nm and 1 930 nm was good, these three wavelengths could be used to develop a regression equation for inversing the values of total soil salinity.
出处 《干旱区研究》 CSCD 北大核心 2013年第3期444-448,共5页 Arid Zone Research
基金 国家"973"计划(2006CB705809) 国家科技支撑计划(2012BAD16B0305) 中国气象局沙漠气象基金(Sqj2012006) 国家高技术研究发展计划(863计划)课题(2012AA100604-6)共同资助
关键词 人工林地 高光谱遥感 土壤盐渍化 准噶尔盆地 新疆 artificial forest hypersprctrum soil salinization Junggar Basin Xinjiang
  • 相关文献

参考文献23

  • 1Dehaan R,Taylor G R. Image-derived spectral end members as in-dicators of salinisation [J] International Journal of Remote Sens- ing,2003,24 (4) :775 - 794.
  • 2Metternicht G I,Zinck J A. Remote sensing of soil salinity:Poten- tials and constraints[J]. Remote Sensing of Environment, 2003, 85:1 -20.
  • 3Goetz A F H, Vane G, Solomon J E, et al. Imaging spectroscopy for earth remote sensing[J]. Science,1985,228:1 147 - l 153.
  • 4Kfishnan P, Alexander J D, Butler B J, et al. Reflectance technique for predicting soil organic matter [J]. Soil Science Society of Amer- ica Journal, 1980,44 : 1 282 - 1 285.
  • 5Ben-Dor E, Banin A. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties[ J]. Soil Science So- ciety of America Journal, 1995,59:364 - 372.
  • 6刘培君,张琳,范春清.利用光谱数据估算塔里木河流域主要地物在陆地卫星象片上的灰度级[J].干旱区研究,1988,5(3):37-41. 被引量:2
  • 7Kooistra L, Wehrens L, Leuven RS EW, et al. Possibilities of visi- ble-near-infrared spectroscopy for the assessment of soil contamina- tion in river floodplains [J] Analytica Chemical Acta, 2001,446 : 97 - 105.
  • 8Chodak M, Ludwig B, Khanna P, et al. Use of near infrared spec- troscopy to determine biological and chemical characteristics of or- ganic layers under spruce and beech stands [J] Journal of Plant Nutrition and Soil Science,2002,165:27 - 33.
  • 9Howari F M, Goodell P C, Miyamoto S. Spectral propertiea of salt crusts formed on saline soils [ J ]. Journal of Environment Quality, 2002,31:1 453 - 1 461.
  • 10Dehaan R L, Taylor G R. Field-derived spectra of stalinized soils and vegetation as indicators of irrigation-induced soil stalinization [ J ] Remote Sensing of Environment,2002,80:406 - 417.

二级参考文献103

共引文献242

同被引文献154

引证文献9

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部