期刊文献+

白假丝酵母菌生物膜中滞留菌形成的动态监测及分析 被引量:1

Dynamic monitoring and analysis of the persisters emerging in Candida albicans biofilm
下载PDF
导出
摘要 目的:研究白假丝酵母菌生物膜产生滞留菌的动态特点,为揭示其产生机制及相关途径奠定基础。方法:分别以两相型白假丝酵母菌标准菌液构建体外生物膜模型,CFU计数法统计不同时间段生物膜加药前真菌细胞繁殖数目及加药后滞留菌产生数目,采用SPSS11.5软件包对数据进行统计学分析;结合激光共聚焦显微镜(CLSM),观察生物膜的形态变化。结果:两相型菌液形成的不同时间段生物膜,真菌细胞繁殖数目及滞留菌数目均无显著差异。其中,真菌细胞繁殖数目呈"S"形生长,12 h后渐稳定;滞留菌0.5 h即大量产生,2 h后数目基本稳定,此时镜下生物膜处于微菌落始形成期。结论:白假丝酵母菌滞留菌的形成与其生物膜形成初期(2 h内)附着表面的诱导密切相关,而与生物膜成熟程度及两相型状态无显著关联。 PURPOSE: To investigate the mechanism and approach related to persisters emerging in Candida albicans biofilm by studying its dynamic characteristics. METHODS: The Candida albicans biofilms model in vitro were formed by individual yeast cells and hyphal compartments respectively. The numbers of progenitive fungal cells and persisters at different stages were counted and analyzed with SPSSll.5 software package. The biofilm morphological changes were observed under confocal scanning laser microscopy. RESULTS: Different stages of biofilms which were formed by individual yeast cells and hyphal compartments had no significant difference both on the number of progenitive fungal cells and persisters. The number of progenitive fungal cells showed S-shaped growth curve until 12 hours. The persisters emerged within 0.5 hour and its number reached a steady state after 2 hours while the biofilm was in the period of microcolony formation under microscopy. CONCLUSIONS: The persisters emerging in Candida albicans biofilm are closely connected with the attachment to a surface (within 2 hours of the biofilm formation) and have little association with the maturity of the biofilm and its dimorphism. Supported by National Natural Science Foundation of China(30973310) and Independent Innovation Foundation of Shandong University(2010JQ008).
出处 《上海口腔医学》 CAS CSCD 北大核心 2013年第2期121-125,共5页 Shanghai Journal of Stomatology
基金 国家自然科学基金(30973310) 山东大学自主创新基金(2010JQ008)~~
关键词 白假丝酵母菌 生物膜 滞留菌 动态监测 Candida alblcans Biofilm Persisters Dynamic monitoring
  • 相关文献

参考文献14

  • 1Mah TF, O'Toole GA. Mechanisms of biofilm resistance to antimicrobial agents[J]. Trends Microbiol, 2001, 9(1): 34-39.
  • 2Douglas LJ. Candida biofilms and their role in infection [J]. Trends Microbiol, 2003, 11(1): 30-36.
  • 3Tobudic S, Kraczer C, Lassnigg A, et al. Antifungal susceptibility of Candida albicans in biofilms [J]. Mycoses, 2012, 55 (3): 199- 204.
  • 4Lewis K. Multidrug tolerance of biofilms and persister cells [J]. Curt Top Microbiol Immunol, 2008, 322: 107-131.
  • 5Lewis K. Persister cells, dormancy and infectious disease [J]. Nat Rev Microbiol, 2007, 5(1): 48-56.
  • 6Spoering AL, Lewis K. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials[J]. J Bacteriol, 2001, 183(23): 6746-6751.
  • 7LaFleur MD, Kumamoto CA, Lewis K. Candida albicans biofilms produce antifungal-tolerant persiser cells [J]. Antimicrob Agents Chemother, 2006, 50(11): 3839-3846.
  • 8Chandra J, Kuhn DM, Mukherjee PK, et al. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance[J]. J Bacteriol, 2001, 183(18): 5385-5394.
  • 9Ramage G, Vande Walle K. Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms[J]. Antimicrob Agent Chemother, 2001, 45(9): 2475-2479.
  • 10Murillo LA, Newport G, Lan CY, et al. Genome-wide transcription profiling of the early phase of biofilm formation by Cartdida albicarts[J]. Eukaryotic Cell, 2005, 4(9): 1562-1573.

同被引文献14

  • 1Douglas LJ. Candida biofilms and their role in infection [J]. Trends Microbiol, 2003, 11(1): 30-36.
  • 2Lewis K. Muhidrug tolerance of biofilms and persister cells [J]. Curt Top Microbiol Immunol, 2008, 322: 107-131.
  • 3Latleur MD, Kumamoto CA, Lewis K. Candida albican.s biofilmsproduce antifungal-tolerant persister cells [J]. Antimicrob Agents Chemother, 2006, 50(11): 3839-3846.
  • 4Lafleur MD, Qi Q, Lewis K. Patients with long-term oral carriage harbor high-persister mutants of Candida dbicaas [J]. Antimicrob Agents Chemother, 2010, 54(1): 39-44.
  • 5Balaban NQ, Merrin J, Chait R, et al. Bacterial persistence as a ohenotvoic switch [J]. Science, 2004, 305(5690): 1622-1625.
  • 6Dfirr T, Vuli6 M, Lewis K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli [J]. PLoS Biol, 2010, 8(2): e1000317.
  • 7Ning Y, Hu X, Ling J, et al. Candida albicans survival and biofilm formation under starvation conditions [J]. Int Endod J, 2013, 46(1): 62-70.
  • 8Liu HY, Wei X, Ling YQ, et al. Biofilm formation capability of Enterococcus faecdis ceils in starvation phase and its susceptibility to sodium hypochlorite [J]. J Endod, 2010, 36(4): 630-635.
  • 9Ramage G, Vande Walle K, Wickes BL, et al. Standardized method for in vitro antifungal susceptibility testing of Candida albicons biofilms [J]. Antimicrob Agent Chemother, 2001, 45(9): 2475-2479.
  • 10Lewis K. Persister cells [J]. Annu Rev Microbial, 2010, 64: 357- 372.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部