期刊文献+

调和映照与其剪切函数的单叶性 被引量:5

Univalent Relation between Harmonic Mapping and Its Shear Function
下载PDF
导出
摘要 利用调和映照像区域的线性连结性与单叶性之间的内在联系,研究单位圆盘D上调和映照fα(z)=h(z)+αg(z)与其剪切函数Fβ(z)=h(z)+βg(z)的单叶性问题.研究得到判别单位圆盘上一类局部单叶调和映照为调和拟共形映照的充分必要条件,推广了由S.L.Chen等得到的相应结果. Abstract: By the use of the inner relations between linear connectivity of image domains and univalence of harmonic map-pings, the univalence of harmonic mappingfa(z)=h(z)+ag(z) and its shear function Fβ(z)=h(z)+βg(z)in the unit disk is investigated. Our results improve and generalize the one made by S. L. Chen and other authors. As an application, one necessary and sufficient condition for a class of locally univalent harmonic mappings in the unit disk to be harmonic quasicordormal mappings is obtained.
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2013年第3期334-338,共5页 Journal of Huaqiao University(Natural Science)
基金 福建省自然科学基金资助项目(2011J0101)
关键词 单叶调和映照 线性连结区域 剪切函数 调和拟共形映照 univalent harmonic mapping linearly connected domain shear function harmonic quasiconformal mapping
  • 相关文献

参考文献11

  • 1LEWY H. On the non-vanishing of the jacobian in certain one-to-one mappings[J]. Bull Amer Math Soe, 1936,42 (10) : 689-692.
  • 2AHLFORS L V. Lectures on quasieonformal mappings[M]. New Jersey: Van Nostrand Princeton, 1966:21-24.
  • 3PAVLOVIC M. Boundary correspondence under harmonic quasieonformal homeomrphisms diffenmophisms of the u- nit disk[J]. Ann Aead Sei Fen Math, 2002,27 (2) : 365-372.
  • 4KALAJ D, PAVLOVIC M. Boundary eorrespondenee under harmonic quasieonformal homeomrphisms diffenmo- phisms of a half-plane[J]. Ann Aead Sei Fen Math, 2005,30(1) :159-165.
  • 5KALAJ D. Quasiconformal harrnonie functions between convex domains[J]. Publications De Linstitut Mathe, 2004, 75(89) : 130-146.
  • 6HUANG Xin-zhong. Harmonie quasieonformal mappings on the upper half-plane[EB/OL]. [2012-4-27]. http: ff www. tandfonline, eom/doi/abs/10. 1080/17476933. 2011. 620097.
  • 7胡春英,黄心中.单叶调和函数及其反函数为调和拟共形的充要条件[J].华侨大学学报(自然科学版),2010,31(5):586-589. 被引量:3
  • 8CLUNIE J, SHEIL-SMALL T. Harmonic univalent functions[J]. Ann Aead Sci Fenn (A), 1984,9 (1) : 3-25.
  • 9黄心中.具有线性连结像域的局部单叶调和映照[J].数学年刊(A辑),2010,31(5):625-630. 被引量:4
  • 10CHUAQUI M, HERNAANDEZ R. Harmonic univalent mappings and linearly connected domains[J]. J Math Anal Appl, 2007,33(2) : 1189-1194.

二级参考文献14

  • 1张兆功,刘礼泉.单叶调和映照的反函数[J].数学进展,1996,25(3):270-276. 被引量:6
  • 2LEWY H.On the non-vanishing of the Jacobian in certain one-to-one mappings[J].Bull Amer Math Soc,1936,42(10):689-692.
  • 3PAVLOVI(C) M.Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk[J].Ann Acad Sci Fenn Math,2002,27(2):365-372.
  • 4KALAJ D,Pavlovi(c) M.Boundary correspondence under quasiconformal harmonic diffeomorphisms of a half-plane[J].Ann Acad Sci Fenn Math,2005,30(1):159-165.
  • 5Lewy H. On the non-vanishing of the Jacobian in certain one-to-one mappings [J]. Bull Amer Math Soc, 1936, 42:689-692.
  • 6Pavlovic M. Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk [J]. Ann Acad Sci Fenn Math, 2002, 27:365-372.
  • 7Chen H H, Gauthier P M, Hengartner W. Bloch constants for planar harmonic mappings [J]. Proc Amer Math Soc, 2000, 128:3231-3240.
  • 8Dorff M, Nowak M. Landau's theorem for planar harmonic mappings [J]. Computational Methods and Function Theory, 2004, 4(1):151-158.
  • 9Grigoryan A. Landau and Bloch theorems for harmonic mappings [J]. Complex Variable Theory Appl, 2006, 51(1):81-87.
  • 10Huang X Z. Estimates on Bloch constants for planar harmonic mappings [J]. J Math Anal Appl, 2007, 337:880-887.

共引文献5

同被引文献45

  • 1LEWY H. On the non-vanishing of the Jacobian in certain one-to-one mappings [J]. Uspekhi Mat Nauk, 1948,3 (2) : 216-219.
  • 2AHLFORS L V. Lectures on quasieonformal mappings[M]. New Jersey: Van Nostrand Princeton, 1966:15-22.
  • 3CLUNIE J. SHEIL-SMALL T. Harmonic univalent functions[J]. Ann Acad Sci Fenn Ser (A), 1984,9 (1) : 3-25.
  • 4BSHOUTY D, LYZZAIK A. Problems and conjectures in planar harmonic mappings[J]. J Analysis, 2010,18,69-81.
  • 5HUANG Xin-zhong. Harmonic quasiconformal mappings on the upper half-plane[J]. Complex Variables and Elliptic Equations, 2013,58(7) .. 1005-1011.
  • 6HERN.qDEZ R, MARTIN M J. Stable geometric properties of analytic and harmonic funetions[J]. Math Proc Camb Phil Soe, 2013,155 (2) : 343-359.
  • 7DUREN P. Univalent functions[M]. New York; Springer-Verlag, 1983: 40-45.
  • 8DUREN P. Harmonic mappings in the plane[M]. Cambridge. Cambridge University Press, 2004.29-56.
  • 9BSHOUTY D,LYZZAIK A. Close-to-convexity criteria for planar harmonic mappings[J]. Complex Analysis and Operator Theory, 2011,5(3) : 767-774.
  • 10MOCANU P T. Injeetivity conditions in the complex plane[J]. Complex Anal Oper Theory, 2011,5 (3) :759-766.

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部