期刊文献+

基于变维交互作用的IMM-CKF算法 被引量:2

IMM-CKF ALGORITHM BASED ON VARIABLE DIMENSION INTERACTION
下载PDF
导出
摘要 为了对非线性情况下的机动目标进行跟踪,提出一种变维交互作用的交互多模型容积卡尔曼滤波(IMM-CKF)算法。该算法结合变维交互作用多模型滤波方法和容积卡尔曼滤波方法,对使用相同维数模型的IMM-CKF算法进行扩展,使其能够应用于更一般的目标跟踪环境。仿真结果表明,该算法的跟踪精度明显高于变维交互作用下的交互多模型不敏卡尔曼滤波(IMM-UKF)算法,验证了该算法的可行性和有效性。 To track manoeuvering target in nonlinear condition,an interacting multiple model cubature Kalman filter(IMM-CKF) algorithm with variable dimension interaction model is proposed.The algorithm combines the filtering method of IMM with variable dimension interaction and the cubature Kalman filtering method,extends the IMM-CKF algorithm with same dimension model,makes it be able to apply to the more general target-tracking environment.Simulation results show that this algorithm has obviously higher tracking accuracy than the IMM-UKF with variable dimension interaction method,and also verify the feasibility and effectiveness of the algorithm.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第5期4-6,19,共4页 Computer Applications and Software
基金 国家自然科学基金项目(60736046)
关键词 容积卡尔曼滤波 变维交互作用 交互多模型算法 机动目标跟踪 Cubature Kalman filters Variable-dimensional interaction Interacting multiple model algorithm Manoeuvering target tracking
  • 相关文献

参考文献8

  • 1陈海,单甘霖.基于IMMCKF的机动目标跟踪算法[J].电光与控制,2011,18(10):1-5. 被引量:19
  • 2钱琼芬,徐毓,金宏斌.变维交互作用多模型滤波方法[J].计算机测量与控制,2005,13(8):830-832. 被引量:4
  • 3Arasaratnam I, Haykin S. Cubature Kalman filters [ J]. IEEE Transca- tion on Automatic Control ,2009,54 (6) :1254-1269.
  • 4Bar Shalom Y, Li X R. Muhitarget-Multisensor Tracking Principles and Techniques [ M ]. New Orleans : University of New Orleans, 1995.
  • 5尹瑞,王荫槐,王峰.交互式多模型机动目标跟踪方法的仿真[J].现代雷达,2007,29(7):52-54. 被引量:8
  • 6Berg R F. Estimation and Prediction for Maneuvering Target Trajecto- ries [J]. IEEE Transactions on Automatic Control, 1983,28 (3) : 294 - 304.
  • 7Mazor E, Dayan J, Bar-shalom Y. Interacting Multiple Model in target Tracking,A Survey[J]. IEEE Transaction on Aerospace and Electron- ics, 1998,41 (3) : 103 - 124.
  • 8Blom H A P, Bar Shalom Y. The Interacting Multiple Model Algorithm for Systems with Marko-vian Switching Coefficients[ J]. IEEE Transac- tions on Automatic Control, 1987,33 ( 8 ) :780 - 783.

二级参考文献19

  • 1杨万海 149-161.多传感器数据融合及其应用[M].西安:西安电子科技大学出版社,2003..
  • 2BLOM H A P,BARSHALOM Y.The interacting multiple algorithm for systems with Markovian switching coefficients[J].IEEE Transactions on Automatic Control,1987,33(8):780-783.
  • 3HAYKIN S.Congition is the key to the next generation of radar systems[J].IEEE 13th Digital Signal Processing workshop and 5th IEEE Signal Processing Education Workshop,2009(4):463-467.
  • 4ARASARATNAM I,HAYKIN S.Cubature Kalman filters[J].IEEE Transaction on Automatic Control,2009,54(6):1254-1269.
  • 5FERNANDEZ C,VILAVALLS J.Bayesian nonlinear filtering using quadrature and cubature rules applied to sensor data fusion for positioning[C]//IEEE International Conference on Communications,2010:1-5.
  • 6臧荣春,崔平远,崔祜涛,金艺.基于IMM-UKF的组合导航算法[J].控制理论与应用,2007,24(4):634-638. 被引量:16
  • 7Mazor E, Dayan J, Bar - shalom Y, Interacting Multiple Model in target Tracking, A Survey [J]. IEEE Transactions on Aerospace and Electronics,1998, 34 (1): 103-124.
  • 8shalom B Y. Birmiwal K, Variable dimention filter for maneuvering target tracking [J] IEEE Transaction on Aerospace & Electronic System. AES,1982, 18 (2): 621-629.
  • 9Daeipour E, Shlom B Y. An interacting model approach for target with glint noise[J]. IEEE transacti,ms on Aerospace and Electronics, 1995, 31(3): 706-716.
  • 10Daeipour E, Shalom B Y, IMM tracking of maneuvering Target in the presence of Glint [J]. IEEE Transactions on Aerospace and Electnmics. 1998,34 (3): 996-1003.

共引文献28

同被引文献21

  • 1巴宏欣,赵宗贵,杨飞,董强,张涛.机动目标的模糊自适应跟踪算法[J].系统仿真学报,2004,16(6):1181-1183. 被引量:30
  • 2钱琼芬,徐毓,金宏斌.变维交互作用多模型滤波方法[J].计算机测量与控制,2005,13(8):830-832. 被引量:4
  • 3BAR-SHALOM Y, FORTMANN T. Tracking and data as- sociation [ M ]. San Diego : Academic Press, 1988.
  • 4BLOM H A P. An efficient filter for abruptly changing systems[ C ]//Proceedings of the 23rd Conference on De- cision and Control, 1984:656-658.
  • 5LI X R, BAR-SHALOM Y. Multiple model estimation with variable structure [ J ]. IEEE Transactions on Automatic Control, 1996, 41 (4) :478-493.
  • 6D L Hall, R J Linn, J Lins. A Survey of Data Fusion Systems [ C]. SPIE Orlando, Florida, 1991,1470 : 13-36.
  • 7J J Simon, K U Jeffrey. A New Extension of the Kalman Filter to Nonlinear Systems[ J]. SHE, 1997,3068 : 182-193.
  • 8H SKim, J G Park, D Lee. Adaptive fuzzy IMM algorithm for un- certain target traeking. International Journal of Control, Auto- mation and System, 2009,7(6) : 1001-1008.
  • 9R Hallouzi, M Verhaeqen, S Kanev. Multiple model estimation: a convex model formulation [ J ]. International Journal of Adaptive Control and Signal Processing, 2009,23 (3) :217-240.
  • 10B D Kim, J S Lee. IMM algorithm based on the analytic solution of Steady state Kalman filter for radar target tracking E C ]. Proe. of The IEEE International Radar Conference. 2005,757-762.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部