期刊文献+

基于GLOH算子和局部特征融合的人脸识别 被引量:9

FACE RECOGNITION BASED GLOH DESCRIPTOR AND INTEGRATION OF LOCAL FEATURES
下载PDF
导出
摘要 为了减小高维特征算子的计算复杂度、提高识别算法的准确率,提出一种基于GLOH(Gradient Location and OrientationHistogram)算子的人脸识别算法。首先将人脸图像划分为4个独立的子区域并对提取的特征点进行聚类。为了更有效地描述人脸特征以及特征匹配,为不同的区域赋予不同的权重值,并采取整体结合局部聚类子区域的方法进行人脸识别。通过在ORL人脸图像库上的实验,验证了算法的有效性,特别是在不同表情、不同姿态等干扰因素的条件下,表现出了较好的稳定性和鲁棒性。 In order to reduce the computational complexity of high-dimensional feature descriptor and to improve the accuracy of recognition algorithm,we propose a face recognition algorithm which is based on GLOH descriptor.First,face image is divided into four separate sub-regions and the feature points extracted are clustered.In order to describe the face feature and feature matching more effectively,different regions are given different weight values.The method of the whole combining with local clustering sub-region is employed for face recognition.The effectiveness of the algorithm is verified by experiments on the ORL face image database,which demonstrates good stability and robustness especially under the conditions of some confounding factors such as different facial expressions,postures and so on.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第5期271-274,294,共5页 Computer Applications and Software
基金 内蒙古农业大学基础学科基金项目(JCYJ201201) 内蒙古农业大学创新团队项目(NDPYTD210-9)
关键词 人脸识别 GLOH算子 聚类 特征匹配 Face recognition GLOH descriptor Clustering Feature matching
  • 相关文献

参考文献13

  • 1Harmon L D,Kuo S C,Ramming P F,et al.Identification of human faceprofiles by computer[J].Pattern Recognition,1987,10(5-6):301-312.
  • 2Bledsoe W.The model method in facial recognition[R].Panoramic Re-search Inc.Rep PRI:15,Palo Alto,CA,1996.
  • 3Berto R,Poggio T.Face Recognition:Feature versus templates[J].IEEE Trans.PAMI,1993,15(10):1042-1052.
  • 4Yi Zhou,Lie Gu,Hong Jiang Zhang.Bayesian Tangent Shape Model:Estimating Shape and Pose Parameters via Bayesian Inference[C]//Proceeding of The IEEE Conference on Computer Vision and pattern Recognition(CVPR2003),Wisconsin,USA,June2003,16-22.
  • 5彭辉,张长水,荣钢,边肇祺.基于K-L变换的人脸自动识别方法[J].清华大学学报(自然科学版),1997,37(3):67-70. 被引量:69
  • 6Kristina Mikolajczyk,Cordelia Schmid.A Performance Evaluation of Local Descriptors[J].IEEE Trans.on Pattern Analysis and Machine Intelligence(S0162-8828),2005,27(10):1615-1630.
  • 7Viola P,Jones M J.Robust Real-Time Face Detection[J].Internation-al Journal of Computer Vision,2004,57(2):137-154.
  • 8Brunelli R,Poggio T.Face Recognition:Features versus Templates[J].IEEE Transactions on PAMI,1993,15(10):1042-1052.
  • 9周杰,卢春雨,张长水,李衍达.人脸自动识别方法综述[J].电子学报,2000,28(4):102-106. 被引量:156
  • 10Ke Y.Sukthankar R.PCA—SIFT:A more distinctive representation of local image descriptors.Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Washington DC,USA,2004:506-513.

二级参考文献19

  • 1蔡国廉,子空间法模式识别(译),1987年
  • 2Sung K,IEEE Trans PAMI,1998年,20卷,39页
  • 3Dai Y,Pattern Recognition,1998年,31卷,159页
  • 4Peng H,D Electronics Letters,1997年,33卷,283页
  • 5Zhang J,IEEE Proc,1997年,85卷,1423页
  • 6Lin S,IEEE Trans Neural Networks,1997年,8卷,114页
  • 7Ydeng J,Pattern Recognition,1997年,30卷,403页
  • 8Swets D L,IEEE Trans PAMI,1996年,18卷,831页
  • 9Roder N,Patter Recognition,1996年,29卷,143页
  • 10Lin C C,Pattern Recognition,1996年,29卷,2079页

共引文献240

同被引文献63

引证文献9

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部