期刊文献+

利用云模型实现FSVM遥感影像分类的隶属度算法 被引量:1

USING CLOUD MODEL TO REALISE MEMBERSHIP ALGORITHM OF FSVM CLASSIFICATION OF REMOTE SENSING IMAGE
下载PDF
导出
摘要 针对遥感影像分类面临的数据边界模糊性以及遥感信息解译过程不确定性的问题,结合模糊支持向量机在分类应用中可以有效避免噪声样本干扰的特点,提出一种基于云模型求解模糊支持向量机隶属度的方法。该方法通过无需隶属度的逆向云算法输入样本的定量位置得到样本类别的数字特征,再根据正向云算法计算得到每个样本对其定性类别的隶属度。实验结果表明,采用基于云模型隶属度的模糊支持向量机对遥感影像的分类方法是可行的,并能够有效提高对遥感影像的分类精度。 Remote sensing image classification encounters the problems of fuzziness in data boundary and uncertainty in interpretation process of remote sensing information.In light of this,and in combination with the characteristics of fuzzy support vector machine(FSVM) which can effectively avoid the interference of the noise samples in classification applications,we propose a method for solving the membership of fuzzy support vector machine which is based on cloud model.The method inputs the quantitative position of samples by the reverse cloud algorithm without membership requirement to obtain the numerical characteristics of sample categories,and then gets the membership of each sample to its qualitative category according to the positive cloud algorithm.Experimental results show that it is feasible to use membership of the cloud model-based fuzzy support vector machine on the classification of remote sensing image,and this can effectively improve the classification accuracy of the images.
作者 严信 张月琴
出处 《计算机应用与软件》 CSCD 北大核心 2013年第5期291-294,共4页 Computer Applications and Software
关键词 模糊支持向量机 隶属度 云模型 遥感影像 FSVM Membership Cloud model Remote sensing image
  • 相关文献

参考文献9

  • 1Vapnik V N.The nature of statistical learning theory[M].New York:Springer,1995.
  • 2Lin C F,Wang S D.Fuzzy support vector machines[J].IEEE Trans-action on Neural Networks,2002,13(2):464-471.
  • 3李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1232
  • 4Li Deyi,Shi Xuemei,Ward P,et al.Soft inference mechanism basedon cloud models[C]//Proc of the 1st International Workshop on LogicProgramming and Soft Computing,1996:38-63.
  • 5Li Deyi,Han Jiawei,Shi Xuemei.Knowledge representation and dis-covery based on linguistic atoms[J].Knowledge-based System,1998(10):431-440.
  • 6Mitra P,Shankar B U,Pal S K.Segmentation of multispectral remotesensing images using active support vector machines[J].Pattern Rec-ognition Letters,2004(25):1067-1074.
  • 7吴青,刘三阳,杜喆.基于边界向量提取的模糊支持向量机方法[J].模式识别与人工智能,2008,21(3):332-337. 被引量:13
  • 8Du P,Tan K,Xing X S.A novel binary tree support vector machine forhyper spectral remote sensing image classification[J].Optics Commu-nications,2012,2(92):1-7.
  • 9李刚,万幼川.基于高维云模型和RBF神经网络的遥感影像不确定性分类方法[J].测绘科学,2012,37(1):115-118. 被引量:13

二级参考文献28

共引文献1252

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部