摘要
多标记学习中通常存在大量未标记示例,本研究结合协同训练(Co-training)方法充分利用数据集中的未标记示例,在数据集上选取局部k-NN(k nearest neighbor)和全局k-NN进行训练得到两个分类器,分类器分别标记未标记示例并相互更新训练集。协同训练过程不断迭代进行,直至训练完成。试验结果表明,该方法性能均优于其他多标记学习算法。
Multi-label learning usually has many unlabeled samples.Combined with co-training method,this research made full use of the unlabeled sampled in dataset,selected the local k-NN(k nearest neighbor) and global k-NN for training to get two classifiers,which could label the unlabeled examples and could be added to the training set.The collaborative training process iterated continuously,until the training finished.The experimental results showed that this algorithm could outperform other multi-label learning algorithms.
出处
《山东大学学报(工学版)》
CAS
北大核心
2013年第2期18-22,共5页
Journal of Shandong University(Engineering Science)
基金
国家自然科学基金资助项目(61170145)
教育部高等学校博士点专项基金资助项目(20113704110001)
山东省自然科学基金资助项目(ZR2010FM021)