期刊文献+

一种新的基于半监督的多标记学习算法

A new multi-label learning algorithm based on semi-supervised learning
原文传递
导出
摘要 多标记学习中通常存在大量未标记示例,本研究结合协同训练(Co-training)方法充分利用数据集中的未标记示例,在数据集上选取局部k-NN(k nearest neighbor)和全局k-NN进行训练得到两个分类器,分类器分别标记未标记示例并相互更新训练集。协同训练过程不断迭代进行,直至训练完成。试验结果表明,该方法性能均优于其他多标记学习算法。 Multi-label learning usually has many unlabeled samples.Combined with co-training method,this research made full use of the unlabeled sampled in dataset,selected the local k-NN(k nearest neighbor) and global k-NN for training to get two classifiers,which could label the unlabeled examples and could be added to the training set.The collaborative training process iterated continuously,until the training finished.The experimental results showed that this algorithm could outperform other multi-label learning algorithms.
出处 《山东大学学报(工学版)》 CAS 北大核心 2013年第2期18-22,共5页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(61170145) 教育部高等学校博士点专项基金资助项目(20113704110001) 山东省自然科学基金资助项目(ZR2010FM021)
关键词 半监督学习 多标记学习 局部k-NN 全局k-NN semi-supervised learning multi-label learning local k-NN global k-NN
  • 相关文献

参考文献29

  • 1MCCALLUM A. Multi-label text classification with a mixture model trained by EM [ C ]//Proceedings of Working Notes of the AAAI' 99 Workshop on Text Learning. Menlo Park, CA: AAAI, 1999:1-7.
  • 2SCHAPIRE R E, SINGER Y. BoosTexter: a boosting- based system for text categorization [ J ]. Machine Learn- ing, 2000, 39 (2/3):135-168.
  • 3ELISSEEFF A, WESTON J. A kernel method for multi- labelled classification [ C ]//Proceedings of Advances in Neural Information Processing Systems 14. Cambridge, MA: MIT Press, 2002:681-687.
  • 4BOUTELL M R, LUO J, SHEN X, et al. Learning multi-label scene classification [J ]. Pattern Recognition, 2004, 37(9) :1757-1771.
  • 5COMITE F D, GILLERON R, TOMMASI M. Learning multi-label alternating decision tree from texts and data [ C ]//Proceedings of the Lecture Notes in Computer Sci- ence. Berlin: Springer, 2003:35-49.
  • 6CHEN M S, HAN J H, YU P S. Data mining: an over- view from a database perspective [ J ]. IEEE Trans on Knowledge and Data Engineering, 1996, 8(6) :866-883.
  • 7周志华,张敏灵.MIML:多示例多标记学习[J].机器学习及其应用,2009:218-234.
  • 8UEDA N, SAITO K. Parametric mixture models for multi-label text [C]//Proceedings of Neural Information Processing Systems 15. Cambridge, MA: MIT Press, 2003 : 721-728.
  • 9GAO S, WU W, LEE C H, et al. A MFoM learning ap- proach to robust multi-class multi-label text categorization [ C ]//Proceedings of the 21 st International Conference on Machine Learning. Banff, Alberta, Canada: ACM Press, 2004.320-336.
  • 10CARNEIRO G, CHAN A, MORENO P, et al. Super- vised learning of semantic classes for image annotation and retfieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29 (3) :394-410.

二级参考文献12

  • 1ZHANG ChunHua 1 , TIAN YingJie 2 & DENG NaiYang 3,1 School of Information, Renmin University of China, Beijing 100872, China,2 Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences, Beijing 100080, China,3 College of Science, China Agricultural University, Beijing 100083, China.The new interpretation of support vector machines on statistical learning theory[J].Science China Mathematics,2010,53(1):151-164. 被引量:13
  • 2VAPNIK V N. The nature of statistical learning theory [M]. Berlin: Springer, 2000: 314.
  • 3LIN Hwei-Jen, YEN Shwu-Huey, YEH Jih-Pin, et al. Face detection based on skin color segmentation and SVM classification[C]//Droceeding of the 2008 Second International Conference on Secure System Integration and Reliability Improvement. Washington: IEEE Compute Society, 2008: 230-231.
  • 4ADANKON M, CHER1ET M. Model selection for the LS-SVM: application to handwriting recognition [ J ]. Pattern Recognition, 2009, 42(12) :3264-3270.
  • 5WANG Tai-Yue, CHIANG Huei-Min. One-against-one fuzzy support vector machine classifier: an approach to text categorization [ J ]. Expert Systems with Applications, 2009, 36(6):10030-10034.
  • 6ZHANG Shirong, ZHOU Kuanjiu, TIAN Yuan. An improved NN-SVM based on k congener nearest neighbors classification algorithm [ J ]. Computer Science, 2007, 4798 : 550-555.
  • 7KE Haixin, ZHANG Xuegong. Editing support vector machines [ C ]// Proceedings of International Joint Con- ference on Neural Network. Washington: IEEE Computer Society, 2001, 2 : 1464-1467.
  • 8ALMEIDA M B, BRAGA A, BRAGA J P. SVM-KM: Speeding SVMs learning with a priori cluster selection and k-means[ C ]// Process of the 6th Brazilian Symposium on Neural Networks. Washington: IEEE Computer Society, 2000: 162-167.
  • 9KOGGALAGE R, HALGAMUGE S. Reducing the number of training samples for fast support vector machine classification[ J ]. Neural Information Processing-Letters and Reviews, 2004, 2(3) :57-65.
  • 10NGUYEN G, PHUNG S, BOUZERDOUM A. Efficient SVM training with reduced weighted samples[ C]//Congress on IEEE World Computational Intelligence. Washington : IEEE Computer Society, 2010 : 1764-1768.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部