期刊文献+

分数阶微分方程两点边值问题正解的存在性 被引量:1

Existence of Positive Solutions for Fractional Two-point Boundary Value Problem
下载PDF
导出
摘要 该文研究分数阶两点边值问题,通过构造上下解结合不动点定理,得到分数阶微分方程二点边值问题正解的存在性. In this paper, we deal with fractional two-point boundary value problem, the existence of positive solutions is obtained by means of the lower and upper solution and fixed-point theorems under some conditions.
作者 郭丽敏
出处 《聊城大学学报(自然科学版)》 2013年第1期11-15,共5页 Journal of Liaocheng University:Natural Science Edition
基金 国家自然科学基金资助项目(10971179) 山东省优秀中青年科学家奖励基金(BS2010SF004) 山东省高等学校科技发展计划资助项目(J10LA53)
关键词 分数阶微分方程 上下解 正解 不动点定理 fractional differential equations, the lower and upper solution, positive solution, fixedpoint theory
  • 相关文献

参考文献9

  • 1Liang S,Zhang J.Positive solutions for boundary value problems of nonlinear fractional differential equation[J].Nonlinear Anal,2009,7(64):5 545-5 550.
  • 2Podlubny I.Fractional Differential Equations[M].∥:Mathematics in Sciences and Engineering,vol.198,San Diego:Academic Press,1999.
  • 3Kilbas A A,Srivastava H M,Trujillo J J.Theory and Applications of Fractional Differential equations[M].∥:North-Holland Mathe-matics Studies,vol.204,Amsterdam,Elsevier Science BV:2006.
  • 4Liang S,Zhang J.Existence of three positive solutions of m-point boundary value problems for some nonlinear fractional differential e-quations on an infinite interval[J].Comput Math Appl,2011,61(3):3 343-3 354.
  • 5Su X,Zhang S.Unbounded solutions to a boundary value problem of fractional order on the half-line[J].Comput Math Appl,2011,61(4):1 079-1 087.
  • 6Bai Z,Lu H.Positive solutions for boundary value problems of nonlinear fractional differential equation[J].Math Anal Appl,2005,311(2):495-505.
  • 7Chen S,Ni W,Wang C.Positive solution of fourth order ordinary differential equation with four-point boundary condition[J].ApplMath Lett,2006,197(2):161-168.
  • 8Liang S,Zhang J.Positive solutions of 2nth-order ordinary differential equations with multi-point boundary conditions[J].Appl MathComput,2008,19(3):262-270.
  • 9Guo D.Nonliner Functional Analysis[M].Shandong:Sci Tech Press,1985.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部