期刊文献+

地下大跨度隧道开挖支护过程的数值模拟 被引量:4

Numerical Simulation of Excavation and Supporting Process of Buried Large-span Tunnel
下载PDF
导出
摘要 地下洞室开挖和支护过程的应力和应变状态对隧道工程安全性评估至关重要。文章采用LS-DYNA软件的动力松弛法确定围岩和结构的初始应力和应变状态,然后对开挖、喷锚支护和衬砌支护过程进行数值模拟,分析了围岩Von-Mises应力、塑性应变、最大主应变和位移变化情况。分析表明:开挖和支护方案对围岩应力和应变状态影响较大。大跨度地下工程在开挖和支护过程中出现的塑性变形主要局限于锚杆能够达到的区域,说明喷锚支护设计方案合理;另外,在围岩中会出现一定规模的拉伸应变,主要区域集中在围岩直墙和底板的交界处,但喷射混凝土和衬砌上没有塑性应变发生,拉伸应变的数值也很小;锚杆上的轴力远小于锚杆能承受的最大拉伸轴力,开挖和支护过程结束后整个结构系统均是安全的。 The stress and strain state is very important for tunnel safety assessment in process of excavation and support for buried tunnel. In this paper the dynamic relaxation method in LS-DYNA is used to determine the initial stress and strain of the surrounding rock and structures, and the process of excavation, shotcrete-bolt and lining support by numerical simulation were carried out. The change of Von-Mises stress, plastic strain, maximum principal strain and displacement of surrounding rock is analyzed. It is shown that the scheme of excavation and support have significant influence on the stress and strain of the surrounding rock. The plastic deformation in the process of excavation and support of large scale underground engineering is mainly confined to the area where the bolt can reach; it indicates that the scheme of shotcrete-boh support is reasonable. In addition, there will be certain of the tensile strain in the region of surrounding rock, mainly concentrated in the junction of the straight wall and the floor in the surrounding rock, but there is no plastic strain in the spray concrete and lining, and the value of tensile strain is also small. The axial force in the bolt is much smaller than the maximum tensile axial force which the bolt can bear and the whole structural system is safe at the end of excavation and supporting process.
出处 《地下空间与工程学报》 CSCD 北大核心 2013年第2期271-278,共8页 Chinese Journal of Underground Space and Engineering
基金 国家创新研究群体科学基金项目(51021001) 中国博士后特别资助项目(2012T50722)
关键词 大跨度 围岩 开挖支护 数值模拟 large span surrounding rock excavation and supporting numerical simulation
  • 相关文献

参考文献12

  • 1Y. Guo, X. Jin, J. Ding. Parallel numerical simula- tion with domain decomposition for seismic response a- nalysis of shield tunnel [ J ]. Advances in Engineering Software, 2006, 37: 450-456.
  • 2Christos Z. Karakostas, George D. Manolis. Dynamic response of unlined tunnels in soil with random proper- ties [ J]. Engineering Structures, 2000, 22:1 013- 1 027.
  • 3Svein Remseth, Bernt J. Leira, Knut M. Okstad. Dy-namic response and fluid/structure interaction of sub- merged floating tunnels [ J]. Computers and Structures, 1999, 72: 659-685.
  • 4Y. D. Murray, Computational modeling of underground tunnels in intact and jointed rock (DNA-TR-96-16) [ R]. Colorado, USA: Defense Nuclear Agency, 1997.
  • 5Ls-dyna Keyword user' s manual (V970) [ M ]. Liver- more Software Technology Corporation,2003.
  • 6田绪坤.核触地爆炸荷载下深埋地下结构动力响应分析[D].南京:解放军理工大学,2006.
  • 7丁峻宏,金先龙,郭毅之,曹伟飚,李根国.盾构隧道地震响应的三维数值模拟方法及应用[J].岩石力学与工程学报,2006,25(7):1430-1436. 被引量:18
  • 8M. Papadrakakis. A method for the automatic evalua- tion of the dynamic relaxation parameters [ Jl. Comp. Meth. Appl. Mech. Engng, 1981, 25: 35-48.
  • 9麦倜曾 张玉军.锚固岩体力学性质的研究[J].工程力学,1987,(1):106-116.
  • 10张玉军.锚固岩体流变特性的模型试验与理论研究[D].上海:同济大学,1992.

二级参考文献9

共引文献20

同被引文献31

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部