期刊文献+

高温蓝宝石光纤温度传感器校准测试系统研究 被引量:3

Study on the calibration and test system of ultrahigh sapphire-fiber temperature sensor
下载PDF
导出
摘要 为满足高温蓝宝石光纤温度传感器的标定和测试需要,分析了传感器的测量结构和标定原理,设计了一套基于氧乙炔高温综合测试平台和上位机测试应用软件的标定测试系统。试验结果表明,该系统能够实现传感器在多温度下的标定,并能模拟真实测温方式进行测试试验,具有较好的可靠性和稳定性。 To meet the calibration and testing needs of sapphire-fiber ultrahigh temperature sensor, the measurement structure and calibration method were analyzed, and a calibration and testing system was designed based on the high-temperature comprehensive testing platform of oxyacetylene and application software for testing. The experimental result indicates that the system can realize multi-temperature calibration and simulate the true way of temperature measurement. It is of good reliability and stability.
出处 《电子设计工程》 2013年第9期114-116,119,共4页 Electronic Design Engineering
关键词 蓝宝石光纤温度传感器 普朗克黑体辐射公式 高温 多温度标定 sapphire-fiber temperature sensor Planck formula on black body radiation ultrahigh temperature multi- temperature calibration
  • 相关文献

参考文献4

  • 1王延蕾,栾美生,于彤彦.高温火焰测量装置的标定[J].红外技术,2009,31(7):399-402. 被引量:3
  • 2HAO Xiao-jian,LI Ke-jie,JIANG San-ping. An extrapolation measuring method for transient high-temperature based on separation of variables[J]. Journal of North University ofChina: Natural Science Edition, 2010,32 (2) : 150-155.
  • 3刘玉莎.基于黑体空腔的光纤高温测试系统的研究[D].北京:燕山大学,2008.
  • 4郝晓剑,李科杰,姜三平,周汉昌,王瑞.基于分离变量法的瞬态高温外推测试研究[J].中北大学学报(自然科学版),2010,31(2):150-155. 被引量:3

二级参考文献14

  • 1Chen Y H.A method for measuring emissivities and true temperatures from multiple spemral reflexioninpyrometry[J].High Temp.High Press,1991,24(3):75-85.
  • 2Miller A P,Cezairliyan A.Radiance temperatures(in the wavelength range 521~906 nm)of molybdenum of its melting point by a pulse-heating technique[J].Temp.,itsMeasur.andContr.in Sci.and Ind.,1993,6(2):769-774.
  • 3MichalskiL, EckersdorfK, KueharskiJ, etal. TemperaturesMeasurement[M]. 2nded. John Wiley & Sons, 2001:279-332.
  • 4Nicholas J V, White D R. Traceable Temperatures: An Introduction to Temperature Measurement and Calibration [M]. 2nd ed. John Wiley& Sons, 2001: 21-24.
  • 5Waldemar Minkina. Theoretical and experimental identification of the temperature sensor unit step response non- linearity during air temperature measurement[J]. Sensors and Actuators, 1999, 78: 81-87.
  • 6Lahoucine C O, Khellaf A. Periodic method: correction for thermocouple and simultaneous estimation of thermal conductivity and thermal diffusivity[J]. Review of Scientific Instruments, 2004, 75(7): 132-135.
  • 7Hodgson P I), Kong L X, Davies C H J. Prediction of hot strength in steels with an integrated phenomenological and arlificial neural network model[J].J. Mater. Process. Technol. , 1999, 87.. 132 139.
  • 8Hodgson P D, Collinson D C, Davies C H J, et al. The application of phenomenological, empirical and ANN models to the predication of hot strength in steels[C]. IPMM'97, Brisbane, Australia, 1997: 961-967.
  • 9Kong I. X, Hodgson P D, Collison D C. Modelling the effect of carbon content on hot strength of steels using a modified artificial neural network[C]. ISIJ Int. , 1998(38): 1121-1129.
  • 10Kong I. X, Hodgson P D, Collison D C. Extrapolative prediction of the hot strength of austenitie steels with a combined constitutive and ANN model[J]. Journal of Materials Processing Technology, 2000, 102:84-89.

共引文献4

同被引文献19

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部