期刊文献+

正庚烷脱氢生成烯烃反应的分子模拟 被引量:7

Molecule Simulation of Dehydrogenation of n-Heptane to Produce Olefins
下载PDF
导出
摘要 采用基于密度泛函理论的量子化学方法研究了催化重整过程中正庚烷脱氢生成烯烃的反应过程。结果表明,在无催化剂作用下,正庚烷分子的仲碳C—H键优先发生均裂,生成烷基自由基和氢自由基,均裂能在433.80~434.83kJ/mol范围;中间产物烷基自由基中,与自由基碳相邻的仲碳位的C—H键容易发生均裂生成烯烃,均裂能在187.11~209.18kJ/mol范围。正庚烷脱氢反应产物主要为2-庚烯和3-庚烯。在Pt催化剂作用下,正庚烷均裂仲碳位C—H键的反应能垒在75.90~78.51kJ/mol范围,中间产物烷基自由基中,与自由基碳相邻的仲碳位的C—H键均裂的反应能垒为99.63kJ/mol,说明Pt催化剂有效地降低了烷烃脱氢反应能垒。 Density functional theory (DFT) quantum chemical method was used to study the process of dehydrogenation of n-heptane to produce olefins. The results showed that, in the absence of catalyst, homolysis of the C-H bond on the secondary carbon atom in n-heptane occurred preferentially to generate alkyl radicals and hydrogen radicals, in which the homolysis energy was in the range of 433.80-434.83 kJ/mol. In the intermediate products of alkyl radicals, the C—H bond on the secondary carbon atom, which adjacent to the free radical carbon atom, will give priority homolysis to generate olefin, in which the homolysis energy was in the range of 187.11-209.18 kJ/mol. The main reaction products of n-heptane dehydrogenation were 2-heptene and 3-heptene. In the presence of Pt catalyst, the reaction energy barrier for homolysis of the C-H bond on the secondary carbon atom in n-heptane was in the range of 7590-78.51 kJ/mol. For intermediate products of alkyl radicals, the reaction energy barrier for homolysis of the C-H bond on the secondary carbon atom, which adjacent to the free radical carbon atom was 99.63 kJ/mol,indicating that Pt catalyst has a good effect on reducing the reaction energy barrier of alkane dehydrogenation.
出处 《石油学报(石油加工)》 EI CAS CSCD 北大核心 2013年第2期181-185,共5页 Acta Petrolei Sinica(Petroleum Processing Section)
基金 中国石油化工股份有限公司项目(110096)资助
关键词 正庚烷 脱氢 均裂 催化剂 分子模拟 n-heptane dehydrogenation homolysis catalyst molecular simulation
  • 相关文献

参考文献15

  • 1BURTRON H D. Alkane dehydrocyclization mechanism [J]. Catalysis Today, 1999, 53: 443-516.
  • 2ASTM, Knocking Characteristics of Pure Hydrocarbons [S]. API Research Projects 45, Philadelphia. 1958.
  • 3杨锡尧,潘韫,庞礼,等.常压下Pt_Alzos催化剂的正庚烷脱氢芳构化活性中心[J].催化学报,1985,6(3):288-291.
  • 4杨锡尧,刘燕萍,陆新,等.Pt-A12O3的烃类催化转化活性中心性质[J].燃料化学学报,1985,13(2):97-105.
  • 5方大伟,马爱增,潘锦程.Pt/ZrO_2-γ-Al_2O_3催化剂芳构化反应性能研究[J].石油炼制与化工,2008,39(3):28-33. 被引量:7
  • 6MILLS G A, HEINEMANN H, MILLIKEN T H, et al. Catalytic mechanism[J]. International Electrotechnical Commission, 1953, 45(1) : 134-224.
  • 7KEULEMANS A I M, VOGE H. Reactivities of naphthenes over a platinum reforming catalyst by a gas chromatographic technique[J]. J Pys Chem, 1959, 63: 476.
  • 8刘伟成,田志坚,徐竹生.正癸烷脱氢生成直链单烯烃的热力学分析[J].石油学报(石油加工),2001,17(4):39-43. 被引量:9
  • 9张高勇 刘骥 唐鸿鑫.长链烷烃脱氢主反应及其失活过程表观动力学研究.燃料化学学报,1983,(2):48-59.
  • 10康保安 唐鸿鑫 张高勇 等.长链烷烃脱氢动力学的研究.日用化学工业,1986,(3):1-6.

二级参考文献11

共引文献15

同被引文献116

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部