期刊文献+

基于分子管理石脑油5A分子筛液相模拟移动床吸附分离工艺的优化 被引量:2

Optimization of Liquid-Phase Simulated Moving Bed Technology for Naphtha Separation by 5 A Molecular Sieve Based on Molecular Management
下载PDF
导出
摘要 在已有固定床工艺的基础上,提出基于分子管理的液相模拟移动床吸附分离工艺以实现石脑油中的正构烷烃与非正构烷烃的分离。考察了模拟移动床工艺的操作温度、切换时间、进料流速、脱附剂流速以及脱附油抽出流速对分离效果的影响,也考察了后续脱附剂精馏回收过程。结果表明,优化的工艺操作条件为操作温度170℃、切换时间900s、进料流速5mL/min、脱附剂流速20mL/min、脱附油抽出流速10mL/min。经过模拟移动床吸附分离工艺,脱溶剂脱附油中正构烷烃质量分数达到98%,脱溶剂吸余油中非正构烷烃质量分数也达到92%。与原料石脑油相比,脱溶剂脱附油作为乙烯裂解原料时,乙烯收率可以提高约17百分点;脱溶剂吸余油的芳烃潜含量提高了约10百分点,其研究法辛烷值提高了约20个单位。 On the basis of the fixed bed technology, a novel liquid-phase simulated moving bed (SMB) technology for separating normal paraffins from naphtha based on molecular management was proposed. The effects of temperature, switching time, feed flow rate, desorbent flow rate and extract oil flow rate on the separation performance of SMB were investigated. The subsequent desorbent recycle system was simulated. The optimal conditions for SMB were obtained, including temperature of 170℃, switching time of 900 s, feed flow rate of 5 mL/min, desorbent flow rate of 20 mL/min and extract oil flow rate of 10 mL/min, under which the mass fraction of normal paraffins in de-solvent extract oil reached 98% and the mass fraction of non-normal paraffins in de-solvent raffinate oil reached 92%. Compared to naphtha, with the de-solvent extract oil as the feed of ethylene cracking process the ethylene yield increased by 17%, and the potential aromatics content of de-solvent raffinate oil increased by 10% and the octane number increased by 20 units.
出处 《石油学报(石油加工)》 EI CAS CSCD 北大核心 2013年第2期297-303,共7页 Acta Petrolei Sinica(Petroleum Processing Section)
关键词 模拟移动床工艺 石脑油 正构烷烃 5A分子筛 simulated moving bed naphtha normal paraffins 5 A molecular sieve capacity
  • 相关文献

参考文献27

  • 1沈本贤,刘纪昌,陈晖,等.石脑油的优化利用方法:中国专利,1710030[P].2005-12-21.
  • 2LIU J C, SHEN B X, SUN H. Adsorption behavior of normal paraffins in a fixed bed adsorber containing 5A molecular sieves[J]. Adsorp Sci Technol, 2006, 24(4): 311-320.
  • 3MIANO F. Adsorption of hydrocarbon vapour mixtures onto zeolite 5A[J]. Colloid Surface A, 1996, 110(1): 95-104.
  • 4SYMONIAK M F. Upgrade naphtha to fuels and feedstocks[J]. Hydrocarbon Process, 1980, 5: 110.
  • 5WANLESS G J. Hydrocarbon separation process: US, 1:000059[P]. 1976.
  • 6NEUZIL R W, GROVE D, SKALA H. Method for mproving molecular sieves: US, 3405057[P]. 1968.
  • 73ARRER R M. Sorption in porous crystals: Equilibria md their interpretation [ J ]. J Chem Technaol 3iotechnol, 1981, 31(1), 71.
  • 8JOBIC H, KARGER J, KRAUSE C, et al. Diffusivities of n-alkanes in 5A zeolite measured by neutron spin echo, pulsed-field gradient NMR, and zero length column techniques[J]. Adsorption, 2005, 11(1): 403-407.
  • 9KOLOKOLOV D I, ARZUMANOV S S, STEPANOV A G, et al. Dynamics of linear n-C6-n-C22 atkanes inside 5A zeolite studied by 2H NMRFJ]. J Phys Chem C, 2007, 111(11): 4393-4403.
  • 10SILVA J A C, RODRIGUES A E. Sorption and diffusion of n-pentane in pellets of 5A zeolite[J]. Ind Eng Chem Res, 1997, 36(2): 493-500.

二级参考文献6

  • 1[1]Qu Guohua. Optimization of Steam Cracking Feedstock.Ethylene Industry, 2002, 14(4): 61- 65.
  • 2[2]Jose A C, Silva Francisco A. Separation of n/iso-paraffins by PSA. Separation and Purification Technology, 20(2000): 97- 110
  • 3[3]He Jie, Yan Aizhen. Study on Performance of 5A Zeolite.Acta Petrolei Sinica(Petroleum Processing), 1990, 6(4): 8-14.
  • 4[4]Ralph T. Yang. Gas Separation by Adsorption Process.Edition 1, New York: Butterworth Publishers, 1987, 178.
  • 5[5]Zhang Chengcong, Ma Xiang, Yang Wenfan. Fast Determination of Gasoline Octane Number by High Resolution Gas Chromatography. Yunnan University Journal, 1999, 21(4): 291 - 293.
  • 6[6]Gorana Protic-Lovasic, Nada Jambrec, Djurdja Deur-Sifiar.Determination of Catalytic Reformed Gasoline Octane Number by High Resolution Gas Chromatography. FUEL, 1990,69:525-528

共引文献11

同被引文献37

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部