期刊文献+

局域化互信息度量的ACM下医学图像的分割 被引量:10

Medical image segmentation based on ACM of localized mutual information
下载PDF
导出
摘要 大量医学图像中存在灰度不均匀现象使传统方法很难获得理想的分割结果,针对此问题,将图像的局部统计特征引入互信息度量的分割模型中,考虑不同组织间的方差差异,提出一种局域化互信息度量的活动轮廓模型(ACM),以提高灰度不均匀情况下目标边界识别的精确度。此外,采用一种无需重新初始化的水平集函数规则化方法,演化稳定,收敛速度快。最后,以医学图像分割实验对算法进行了验证,对比实验表明分割和偏移场矫正结果都更精确。 Due to the inhomogeneous intensity in most medical images, it is usually difficult for the traditional methods to obtain desired segmentation results. Aiming at this problem, by using the local statistical characteristic of an image, an active contour model based on local mutual information, which considers the variance differences among different tissues, is presented to improve the target boundary identification accuracy in the case of inhomogeneous intensity. And the level set function without re-initialization is regularized, its evolution is stable with a faster convergence rate. The proposed method was applied to segment medical image with promising results. The comparative experiment demonstrates that both the segmentation and bias correction results are more accurate.
出处 《电子测量与仪器学报》 CSCD 2013年第4期340-346,共7页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(61174170)资助项目
关键词 灰度不均匀 活动轮廓模型 局域化互信息 偏移场矫正 intensity inhomogeneity active contour model localized mutual information bias correction
  • 相关文献

参考文献16

  • 1田捷,包尚联,等.医学影像处理与分析[M].北京:电子工业出版社,2000.
  • 2SLED J,ZIJDENBOS A, EVANS A. A nonparametricmethod for automatic correction of intensity non-uniform-ity in MRI data [ J]. IEEE Trans Med Imaging, 1998,17(1) : 87-97.
  • 3OSHER S, SETHIAN J A. Fronts propagating with cur-vature dependent speed : algorithms based on Hamilton-Jacobi formulations[ J]. Journal of Computational Phys-ics, 1988, 79(1) : 1249.
  • 4刘阳,王福利,常玉清,吕哲.基于改进主动轮廓模型的注塑制品轮廓提取[J].仪器仪表学报,2009,30(7):1410-1415. 被引量:5
  • 5许文海,续元君,董丽丽,李瑛.基于水平集和支持向量机的图像声呐目标识别[J].仪器仪表学报,2012,33(1):49-55. 被引量:20
  • 6CHAN T,VESE L. Active contours without edges[J],IEEE Transactions on Image Processing, 2001,10(2);266-277.
  • 7PARAGIOS N,DERICHE R. Geodesic active regionsand level set methods for supervised texture segmenta-tion [J]. Int. J. Comput. Vis.,2002,46 ( 3 ):223-247.
  • 8RONFARD R. Region-based strategies for active con-tour models [ J]. Int. J. Comput. Vis.,1994, 13(2):229-251.
  • 9SAMSON C,BLANC-FERAUD L, AUBERT G, et al.A variational model for image classification and restora-tion[ J]. IEEE Trans. Pattern Anal. Mach. Intell.,2002, 22(5): 460472.
  • 10MUMFORD D,SHAH J. Optimal approximations bypiecewise smooth functions and associated variationalproblems [ J] . Commun. Pure Appl. Math.,1989,42(5): 577-685.

二级参考文献28

  • 1陈波,杨阳,沈田双.一种基于不变矩和SVM的图像目标识别方法[J].仪器仪表学报,2006,27(z3):2093-2094. 被引量:11
  • 2梁晓云,章品正,王蔚林,曾卫明,罗立民,王立功,周正东.Hausdorff距离与GA相结合的医学图像配准[J].仪器仪表学报,2004,25(z1):535-537. 被引量:2
  • 3栾红霞,戚飞虎.一种新的用于MR脑图像分割的主动轮廓模型[J].仪器仪表学报,2004,25(z1):558-560. 被引量:7
  • 4KASS M, WITKIN A, TERZOPOULOS D. Snakes : Active contour models [ J ]. International Journal of Computer Vision, 1987,1 (4) :321-331.
  • 5JAIN A K, ZHONG Y, JOLLY M P D. Deformable template models : A review [ J ]. Signal Processing, 1998,71 (2) : 109-129.
  • 6JACOB M, BLU T, UNSER M. Efficient energies and algorithms for parametric Snakes [ J ]. IEEE Transactions on Image Processing, 2004,13 (9) : 1231-1244.
  • 7LI B, ACTON S T. Active contour external force using vector field convolution for image segmentation [ J ]. IEEE Transactions on image processing, 2007, 8 ( 16 ) : 2096-2106.
  • 8XU C, PRINCE J L. Snakes, shapes, and gradient vector flow [ J ]. IEEE Transactions on Image Processing, 1998,7 ( 3 ) :359-369.
  • 9FIGUEIREDO M A, LEITAO J M N. Unsupervised contour representation and estimation using b-splines and a minimum description length criterion [ J ]. IEEE Transactions on Image Processing, 2000,6 (9) : 1075-1087.
  • 10BRIGGER P, HOEG J, UNSER M. B-spline snakes: A flexible tool for parametric contour detection [ J ]. IEEE Transactions on Image Processing, 2000, 9 ( 9 ) : 1484-1496.

共引文献24

同被引文献65

  • 1钟思华,王梦璐,郭兴明,张瑶,郑伊能.基于改进VNet的肺结节分割方法研究[J].仪器仪表学报,2020,41(9):206-215. 被引量:11
  • 2陈业航,李智,冯宝,陈相猛,龙晚生.基于改进的活动轮廓模型的胸膜接触型肺结节分割[J].仪器仪表学报,2019,40(11):107-116. 被引量:7
  • 3郭辉.多线程的效率[J].计算机应用,2008,28(S2):141-143. 被引量:6
  • 4刘宝生,闫莉萍,周东华.几种经典相似性度量的比较研究[J].计算机应用研究,2006,23(11):1-3. 被引量:44
  • 5LIM T Y,RATNAM M M,KHALID M A.Automatic classification of weld defects using simulated data and an MLP neural network[J].Insight,2007,49 (3):154-159.
  • 6VILAR R,ZAPATA J,RUIZ R.An automatic system of classification of weld defects in radiographic images[J].NDT and E International,2009,42(5):467-476.
  • 7ZAPATA J,VILAR R,RUIZ R.An adaptive-networkbased fuzzy inference system for classification of welding defects[J].NDT & E International,2010,43 (3):191-199.
  • 8ZAPATA J,VILAR R,RUIZ R.Performance evaluation of an automatic inspection system of weld defects in radiographic images based on neuroclassifiers[J].Expert Systems with Applications,2011,38 (7):8812-8824.
  • 9MIRAPEIX J,GARCíA-ALLENDE P B,COBO A,et al.Real-time arc-welding defect detection and classification with principal component analysis and artificial neural networks[J].NDT & E International,2007,40 (4):315-323.
  • 10ALAKNANDA,ANAND R S,KUMAR P,et al.Flaw detection in radiographic weldment images using morpho logical watershed segmentation technique[J].NDT&E International,2009,42(1):2-8.

引证文献10

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部