期刊文献+

Meyer-Konig-Zeller算子对一类绝对连续函数的逼近 被引量:1

Rate of Convergence of the Meyer-Konig-Zeller Operators for Some Absolutely Continuous Functions
下载PDF
导出
摘要 主要利用Bojanic-Cheng方法,结合分析技术,研究了Meyer-Knig-Zeller算子对一类绝对连续函数的逼近,得到了比较精确的收敛阶估计。 By Bojanic-Cheng’s method and analysis techniques,the approximation properties of the Meyer-Knig-Zeller operators for some absolutely continuous functions are studied,and a relatively accurate approximation rate is obtained.
出处 《莆田学院学报》 2013年第2期19-21,共3页 Journal of putian University
基金 福建省教育厅A类科技项目(JA12360)
关键词 MEYER-KONIG-ZELLER算子 收敛阶 绝对连续函数 Meyer-Konig-Zeller operators approximation rate absolutely continuous functions
  • 相关文献

参考文献7

  • 1Zeng X M, Cheng F. First order absolute moment of Meyer-Ktinig and Zeller operators and their approximation for some absolutely continuous functions[J]. Math Slovaca, 2011, 61:635-644.
  • 2连博勇,孙逊.BS-Bézier算子的某些逼近性质研究[J].莆田学院学报,2009,16(2):17-19. 被引量:1
  • 3蔡清波.Picard算子对绝对连续函数的逼近[J].泉州师范学院学报,2010,28(6):63-65. 被引量:4
  • 4连博勇,陈旭,曾晓明.关于Bernstein-Bézier算子对一类绝对连续函数的逼近[J].厦门大学学报(自然科学版),2006,45(6):749-751. 被引量:5
  • 5Zeng X M. On the rates of approximation of Bemstein type operators[J]. J Approx Theory, 2001, 109:242-256.
  • 6Zeng X M. Rates of approximation of bounded variation functions by two generalized Meyer-Krnig and Zeller type operators[J]. Comput Math Appl, 2000, 39:1-13.
  • 7Bojanic R, Cheng F. Rate of convergence of Bemstein polynomials for functions with derivatives of bounded variation[J]. J Math Anal Appl, 1989, 141 : 136-151.

二级参考文献9

  • 1连博勇,陈旭,曾晓明.关于Bernstein-Bézier算子对一类绝对连续函数的逼近[J].厦门大学学报(自然科学版),2006,45(6):749-751. 被引量:5
  • 2ZENG Xiao Ming.Approximation properties of Gamma operators[J].J Math Anal Appl,2005(311):389-401.
  • 3BOJANIC R,CHENG F.Rate of convergence of Bernstein polynomials for functions with derivatives of bounded variation[J].J Math Anal Appl,1989(141):136-151.
  • 4Chang G.Generalized Bernstein-Bézier polynomials[J].J.Comput.Math.,1983,1(4):322-327.
  • 5Li P,Gong Y H.The order of approximation by the generalized Bernstein-Bézier polynomials[J].J.of China Univ.of Science and Technology,1985,15(1):15-18.
  • 6Liu Z X.Approximation of continuous functions by the generalized Bernstein-Bézier polynomials[J].Approx.Theory.Appl.,1986,2(4):105-130.
  • 7Zeng X M,Piriou A.On the rate of convergence of two Bernstein-Bézier type operators for bounded variation functions[J].J.Approx.Theory,1998,95:369-387.
  • 8Zeng X M.On the rate of convergence of two Bernstein-Bézier type operators for bounded variation functions II[J].J.Approx.Theory,2000,104:330-344.
  • 9Bojanic R,Cheng F.Rate of convergence of Bernstein polynomials for functions with derivatives of bounded variation[J].J.Math.Anal.Appl.,1989,141:136-151.

共引文献6

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部