期刊文献+

基于LRP的自适应运动目标检测算法

Adaptive Moving Object Detecting Based on LRP
下载PDF
导出
摘要 传统的运动目标检测算法主要基于像素值的统计模型,对于光照突变和噪声极为敏感.为此,提出了一种基于局部比率模式(LRP)的自适应运动目标检测算法.使用LRP描述视频图像序列中像素特征,通过自适应核密度估计对像素特征进行建模,提取出运动目标.实验结果表明,该算法适应光照变化,有良好的检测性能. Traditional moving object detecting algorithms are mainly based on statistical model by pixel value, which are extremely sensitive to illumination variance and noises. To resolve this problem, a novel adaptive moving object detecting method was proposed by model pixels with its local ratio pattern (LRP). Pixel features in video image sequences were conducted by LRP, and the moving objects were extracted through kernel density estimation. The results of experiments on L2R databases demonstrate that the proposed has excellent detection accuracy on complex scenes. adaptive algorithm
出处 《佳木斯大学学报(自然科学版)》 CAS 2013年第2期253-255,259,共4页 Journal of Jiamusi University:Natural Science Edition
基金 安徽省高校教学研究重点项目(20101689 20101686) 安徽省自然科学基金项目(11040606M150) 安徽省高校自然科学研究重点项目(KJ2011A048)
关键词 目标检测 光照变化 局部比率模式 自适应核密度估计 带宽估计 object detection illumination variance local ration pattern adaptive kernel density estima- tion bandwidth estimation
  • 相关文献

参考文献8

  • 1Stauffer C, Grimson W. Adaptive Background Mixture Models for Real - time Tracking[ C]. Proc of IEEE Conference on Com- puter Vision and Pattern Recognition. Fort Collins, USA: IEEE Press, 1999 : 246 -252.
  • 2Elgammal A M, Hanvood D, Davis L S. Non - parametric Model for Background Subtraction [ C ]. Proc of 6th European Confer- ence on Computer Vision. Dublin, Ireland: Springer - Verlag, 2000:751 - 767.
  • 3贾爱芹,徐贵力.基于运动平台的运动目标检测与跟踪[J].佳木斯大学学报(自然科学版),2009,27(2):171-173. 被引量:2
  • 4Zaharescu A, Jamieson M. Multi -scale Multi -feature Code- book -based Background Subtraction[ C]. Proc of IEEE Confer- ence on Computer Vision Workshops. Barcelona, Spain: IEEE Press, 2011:1753 - 1760.
  • 5Ojala T, Pietikainen M, Harwoed D. A Comparative Study of Texture Measures with Classification Based on Featured Distribu- tion[ J ]. Pattern Recognition, 1996, 29 ( 1 ) : 51 - 59.
  • 6Li L, Huang W, Gu I, Tian Q. Foreground Object Detection from Videos Containing Complex Background[ C]. Proc of 1 lth ACM International Conference on Multimedia, Berkely CA, USA: ACM Press, 2003:2-10.
  • 7Heikkilii Marko, Matti Pietik? inen, and J Heikkil?. A Texture -based Method for Detecting Moving Objects[ C]. Proc of the British Machine Vision Conference, London, British: BMVA Press, 2004:2 - 10.
  • 8Kim K, Chalidabhongse T H, Harwood D, Davis L. Background Modeling and Subtraction by Codebook Construction [ C ]. Proc of IEEE International Conference on Image Processing, Singa- pore, 20134:3061 -3064.

二级参考文献5

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部