期刊文献+

变系数热传导反问题的稳定数值边界 被引量:1

Stable Numerical Boundaries for a Heat Conduction Inverse Problem with Variable Coefficient
下载PDF
导出
摘要 将研究一类未曾被研究过的含未知边界的变系数反问题,为了计算该类反问题的解及其数值边界,将引入有限差分的方法进行研究,这种方法的基本思想是:把所要研究的问题分成三个子问题,对三个子问题分别构造不同的有限差分格式,以此来计算反问题的解及其两个未知边界,然后对三个差分格式的稳定性进行深刻探讨和证明,最后给出具体的数值试验结果,表明这种方法解出的未知边界数值解不仅结果符合物理解,而且精度远高于其他方法. An inverse problem of heat conduction with variable coefficient and unknown boundaries was researched in this article. A finite difference technique was introduced to compute unknown boundaries and solution of this problem. In this method, the concerned problem was separated into three parts, and accordingly three new finite difference schemes were constructed, Two unknown boundaries and solution of inverse problem can be solved. Then stability conditions for numerical solution were discussed and proved carefully. In the last section, numerical example shows the method given in this paper is more accurate and effective than others.
作者 汪平
出处 《佳木斯大学学报(自然科学版)》 CAS 2013年第2期294-298,302,共6页 Journal of Jiamusi University:Natural Science Edition
关键词 反问题 非线性 有限差分格式 稳定性 高精度 inverse problem non - linear finite difference scheme stability high accurate
  • 相关文献

参考文献5

  • 1X. Z. Jia , Y.B. Wang. A Boundary Integral Method for Solving Inverse Heat Conduction Problem. J. inv. Ⅲ - posed probl, 2006,14(4) :375 -384.
  • 2G . C . Hsiao, J. Saranen. Boundary Integral Solution of The 2 - Dimensional Heat Equation. Math. Meth. Appl. Sci, 1993,16 : 87 - 114.
  • 3D. Lesnic, L. Elliott. Application of the Boundary Element Meth-od to Inverse Heat Conduction Problems. J . Heat. Mass. Trans- fer,1996,39(7) :1503 - 1517.
  • 4J. I. Frankel. Residual - minimization Least - Squares Method for Inverse Heat Conduction, Comp. Math. Appl, 1996,32 (4) : 117 - 130.
  • 5L. Elden, F. Berntsson. Wavelet and Fourier Methods for Solving Sideways Equation. SIAM. Sei. Comp,2000,21(6):2187- 2205.

同被引文献5

  • 1JONAS P, LOUIS A K. Approxinmate Inverse for a One-dimensional Inverse Heat Conduction Problem [J]. Inverse Problem, 2000, 16(1): 175-185.
  • 2LESNIC D, ELLIOTT L. The Decomposition Approach to Inverse Heat Conduction [J]. Journal of Mathematical Analysis and Application, 1999, 232( 1 ) : 82-98.
  • 3LIU J. A Stability Analsis on Beek's Procedure for Inverse Heat Conduction Problem [J]. Journal oF Computational Physics, 1996, 123(1) : 65-73.
  • 4SHEN S Y. A Numerical Study of Inverse Heat Conduction Problems [J]. Computers and Mathematics With Applications, 1999, 38(7-8): 173-188.
  • 5SHIDFAR A, POURGHOLI R. Application of finite difference method to analysis an ill-posed problem [J ]. Applied Mathematics anti Computation, 2005, 168 : 1400-1408.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部