期刊文献+

Logistic回归模型的影响分析 被引量:34

Influence Analysis for Logistic Regression Model
原文传递
导出
摘要 Logistic回归模型的影响分析是Logistic回归诊断研究中的重要内容。常用的分析方法都是轮换地删除数据点后的逐步判断,而这个判断的过程主要体现在模型的诊断图上。鉴于此,通过构造诊断统计量来有效地开发诊断图成为影响分析的核心内容,并由此能较为准确地探寻出模型的强影响点。本文通过对Logistic回归模型帽子矩阵的分解以及对轮换地删除数据点后的系数估计的相对变化量进行加权,得出Logistic回归模型诊断图使其能比传统的诊断图更准确地判断出模型的强影响点。 Influence analysis for logistic regression model is important content in the process of diagnosis study. The common method of analysis is stepwisely judgment when data points are alternately deleted and the judgment program is mainly reflected diagnosis charts of the model. In view of this, diagnosis charts of influence analysis are effectively developed through the construction of diagnostic statistics that is core content. At the same time, it can accurately find out the strong influential points of the model. This article has got diagnostic charts more accurate than conventional diagnostic charts for determining strong influential points of the model by decomposing the hat matrix for the logistic regression model and alternately deleting the data point estimates of the coefficients of relative changes weighting.
作者 谭宏卫 曾捷
出处 《数理统计与管理》 CSSCI 北大核心 2013年第3期476-485,共10页 Journal of Applied Statistics and Management
基金 2011年贵州民族学院学生科研基金资助
关键词 LOGISTIC回归模型 影响分析 扰动分析 诊断统计量 诊断图 logistic regression model, influence analysis, perturbations analysis, diagnosis statistics, diagnosis graph
  • 相关文献

参考文献11

  • 1Cook R D. Detection of influential observation in linear regression [J]. Technometrics, 1977, 19: 15-18.
  • 2Cook R D. Influential observation in linear regression [J]. Journal of the American Statistical Asso- ciation, 1979, 74: 169-174.
  • 3Cook R D, Weisberg S. Characterizations of an empirical influence function for detecting influential cases in regression [J]. Technometrics, 1980, 22: 495-508.
  • 4Pregibon D. Logistic regression diagnostic [J]. The Annals of Statistics, 1981, 9(4): 705 724.
  • 5Landwehr J M, Pregibon D, Shoemaker A C. Graphical methods for assessing logistic regression models [J]. Journal of the American Statistical Association, 1984, 79(385): 61-71.
  • 6Sugata S R, Guria S. Diagnostics in logistic regression models [J]. Journal of the Korean Statistical Society, 2008, 37: 89-94.
  • 7徐宇航,丁邦俊.删失数据下几种两样本检验的功效研究[J].数理统计与管理,2011,30(1):64-69. 被引量:2
  • 8魏章进,唐丹玲,隋广军.热带气旋登陆概率的Logistic模拟[J].数理统计与管理,2012,31(3):389-397. 被引量:4
  • 9Hosmer D W, Lemeshow S. Applied Logistic Regression [M]. New York: John Wiley, 2000: 145-186.
  • 10Rao C R, Toutenburg H. Linear Model and Generalizations [M]. Berlin: Springer, 2008: 322-324.

二级参考文献26

  • 1陈联寿,罗哲贤,李英.登陆热带气旋研究的进展[J].气象学报,2004,62(5):541-549. 被引量:298
  • 2陈玉林,周军,马奋华.登陆我国台风研究概述[J].气象科学,2005,25(3):319-329. 被引量:78
  • 3梁洁仪,贺海晏.登陆台风路径与降水分析[J].中山大学研究生学刊(自然科学与医学版),2006,27(1):76-81. 被引量:7
  • 4Gehan E A. A generalized Wilcoxon test for comparing arbitrarily singly-censored samples [J]. Biometrika, 1965, 52: 203-23.
  • 5Breslow N. A generalized Kruskal-Wallis test for comparing K samples subjects to unequal pattern of censorship [J]. Biometrika, 1970, 57: 579-94.
  • 6Peto R and Peto J. Asymptotically efficient rank invariant test procedures [J]. J. R. Statist. Soc. A, 1972, 135:185-98.
  • 7Lee E T and Wang J W. Statistical methods for survival data analysis [M]. John Wiley & Sons, 2003.
  • 8Gehan E A and Thomas D G. The performance of some two-sample tests in small samples with and without censoring [J]. Biometrika, 1969, 56: 127-32.
  • 9Lee E T, Desu M M and Gehan E A. A Monte Carlo study of the power of some two-sample tests [J]. Biometrika, 1975, 62:425- 32.
  • 10Latta R B. A Monte Carlo study of some two-sample rank tests with censored data [J]. Journal of the American Statistical Association, 1981, 76: 713-19.

共引文献4

同被引文献319

引证文献34

二级引证文献134

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部